Adoption of Herbicide Tolerant and Insect Resistant Crops

JohnSnowLabs

Files Size Format Created Updated License Source
2 2MB csv zip 2 weeks ago John Snow Labs Standard License johnsnowlabs United States Department of Agriculture (USDA), National Agricultural Statistics Service (NASS)
Download

Data Files

File Description Size Last changed Download Other formats
adoption-of-herbicide-tolerant-and-insect-resistant-crops-csv [csv] 281kB adoption-of-herbicide-tolerant-and-insect-resistant-crops-csv [csv] adoption-of-herbicide-tolerant-and-insect-resistant-crops-csv [json] (693kB)
datapackage_zip [zip] Compressed versions of dataset. Includes normalized CSV and JSON data with original data and datapackage.json. 55kB datapackage_zip [zip]

adoption-of-herbicide-tolerant-and-insect-resistant-crops-csv  

This is a preview version. There might be more data in the original version.

Field information

Field Name Order Type (Format) Description
State_Name 1 string Name of the state where genetically engineered crop is grown
Crop_Name 2 string Name of the crop
Genetically_Engineered_Crop_Title 3 string Title assigned to Genetically Engineered crop
Genetically_Engineered_Variety_Title 4 string Title description of the genetically engineered variety
Survey_Year 5 date (%Y-%m-%d) Year the data was collected
Unit_Description 6 string Description of the crop planted
Percent_Unit_Value 7 integer Value of the unit in percentage

datapackage_zip  

This is a preview version. There might be more data in the original version.

Read me

Import into your tool

If you are using R here's how to get the data you want quickly loaded:

install.packages("jsonlite")
library("jsonlite")

json_file <- "http://datahub.io/JohnSnowLabs/adoption-of-herbicide-tolerant-and-insect-resistant-crops/datapackage.json"
json_data <- fromJSON(paste(readLines(json_file), collapse=""))

# access csv file by the index starting from 1
path_to_file = json_data$resources[[1]]$path
data <- read.csv(url(path_to_file))
print(data)

In order to work with Data Packages in Pandas you need to install the Frictionless Data data package library and the pandas extension:

pip install datapackage
pip install jsontableschema-pandas

To get the data run following code:

import datapackage

data_url = "http://datahub.io/JohnSnowLabs/adoption-of-herbicide-tolerant-and-insect-resistant-crops/datapackage.json"

# to load Data Package into storage
storage = datapackage.push_datapackage(data_url, 'pandas')

# data frames available (corresponding to data files in original dataset)
storage.buckets

# you can access datasets inside storage, e.g. the first one:
storage[storage.buckets[0]]

For Python, first install the `datapackage` library (all the datasets on DataHub are Data Packages):

pip install datapackage

To get Data Package into your Python environment, run following code:

from datapackage import Package

package = Package('http://datahub.io/JohnSnowLabs/adoption-of-herbicide-tolerant-and-insect-resistant-crops/datapackage.json')

# get list of resources:
resources = package.descriptor['resources']
resourceList = [resources[x]['name'] for x in range(0, len(resources))]
print(resourceList)

data = package.resources[0].read()
print(data)

If you are using JavaScript, please, follow instructions below:

Install data.js module using npm:

  $ npm install data.js

Once the package is installed, use the following code snippet:

const {Dataset} = require('data.js')

const path = 'http://datahub.io/JohnSnowLabs/adoption-of-herbicide-tolerant-and-insect-resistant-crops/datapackage.json'

// We're using self-invoking function here as we want to use async-await syntax:
(async () => {
  const dataset = await Dataset.load(path)

  // Get the first data file in this dataset
  const file = dataset.resources[0]
  // Get a raw stream
  const stream = await file.stream()
  // entire file as a buffer (be careful with large files!)
  const buffer = await file.buffer
})()

Install the datapackage library created specially for Ruby language using gem:

gem install datapackage

Now get the dataset and read the data:

require 'datapackage'

path = 'http://datahub.io/JohnSnowLabs/adoption-of-herbicide-tolerant-and-insect-resistant-crops/datapackage.json'

package = DataPackage::Package.new(path)
# So package variable contains metadata. You can see it:
puts package

# Read data itself:
resource = package.resources[0]
data = resource.read
puts data
Datapackage.json