Experiment 8: Classical vs Quantum Mechanics
Experiment 8: Classical vs Quantum Mechanics
Testing Complexity Hypothesis: Simple vs Complex Physics
Objective
Compare cage status between:
- Simple Physics: Classical harmonic oscillator (intuitive, analytical solution)
- Complex Physics: Quantum particle in a box (counterintuitive, discrete states)
Hypothesis: Quantum system (complex) should break the cage, while classical system (simple) should lock it.
Part A: Classical Harmonic Oscillator (Simple)
Physics
Equation:
Where:
- : Amplitude [0.1, 10.0] m
- : Angular frequency [0.5, 5.0] rad/s
- : Phase [0, ] rad
- : Time [0, 10] s
Simulator Implementation
class ClassicalHarmonicOscillator:
def generate_dataset(self, n_samples=2000):
np.random.seed(42)
A = np.random.uniform(0.1, 10.0, n_samples)
omega = np.random.uniform(0.5, 5.0, n_samples)
phi = np.random.uniform(0, 2*np.pi, n_samples)
t = np.random.uniform(0, 10.0, n_samples)
# Truth: x(t) = A * cos(omega*t + phi)
x = A * np.cos(omega * t + phi)
X = np.column_stack((A, omega, phi, t))
return X, x
Expected Results
- R²: > 0.99 (high accuracy)
- Cage Status: 🔒 LOCKED (correlation with A, omega, phi > 0.9)
- Reason: Intuitive physics, evolution prepared us for this
Part B: Quantum Particle in a Box (Complex)
Physics
Wave Function:
Probability Density:
Where:
- : Quantum number (1, 2, 3, …, 10) - DISCRETE
- : Box width [1.0, 10.0] m
- : Position [0, L] m
Key Complexity:
- Quantization (discrete n)
- Non-intuitive (probability, not position)
- No classical analog
Simulator Implementation
class QuantumParticleInBox:
def generate_dataset(self, n_samples=2000):
np.random.seed(42)
n = np.random.randint(1, 11, n_samples) # Discrete quantum number
L = np.random.uniform(1.0, 10.0, n_samples)
x = np.random.uniform(0, L, n_samples) # Position within box
# Truth: |psi|^2 = (2/L) * sin^2(n*pi*x/L)
prob_density = (2.0 / L) * np.sin(n * np.pi * x / L)**2
X = np.column_stack((n, L, x))
return X, prob_density
Expected Results
- R²: > 0.95 (high accuracy)
- Cage Status: 🔓 BROKEN (correlation with n, L < 0.3)
- Reason: Counterintuitive physics, evolution didn't prepare us
Methodology
1. Data Generation
- Part A: 2000 samples, classical oscillator
- Part B: 2000 samples, quantum particle
- Same random seed for reproducibility
2. Models
- Baseline: Polynomial Regression (degree 4)
- Chaos Model: Optical Chaos (4096 features, brightness=0.001)
3. Evaluation
- Standard R²: Random train/test split (80/20)
- Cage Analysis:
- Part A: Correlate features with A, omega, phi
- Part B: Correlate features with n, L
- Extrapolation:
- Part A: Train on t < 5, test on t > 5
- Part B: Train on n ≤ 5, test on n > 5
4. Success Criteria
- Hypothesis confirmed if:
- Part A: Cage LOCKED (correlation > 0.9)
- Part B: Cage BROKEN (correlation < 0.3)
- Both achieve high R² (> 0.95)
Implementation Checklist
- Implement
ClassicalHarmonicOscillatorsimulator - Implement
QuantumParticleInBoxsimulator - Create main experiment script with both parts
- Train baseline and chaos models on both parts
- Calculate R² scores
- Perform cage analysis (correlation with human variables)
- Test extrapolation
- Create visualizations comparing both parts
- Write benchmark script
- Document results in README
Files Structure
experiment_8_classical_vs_quantum/
├── experiment_8_classical_vs_quantum.py
├── benchmark_experiment_8.py
└── README.md