Logo

NeuroCHIMERA Benchmark Validation Report

NeuroCHIMERA Benchmark Validation Report

Date: 2025-12-01 Version: 1.0 Status: Scientific Audit Complete


Executive Summary

This report provides a comprehensive audit of all benchmark claims in the NeuroCHIMERA project, distinguishing between experimentally validated data, theoretical projections, and placeholder values requiring verification. This audit ensures scientific rigor and transparency for peer review and publication.

Key Findings:

  • βœ… 4 benchmarks validated with JSON data backing
  • ⚠️ 3 benchmarks require re-validation due to inconsistencies
  • ❌ 1 critical test failed (HNS accumulative)
  • πŸ“Š Multiple discrepancies between reports and raw data identified

Benchmark Status Matrix

BenchmarkJSON SourceStatusValidation LevelIssues
HNS CPU Precisionhns_benchmark_results.json⚠️ PartialMediumNo precision advantage found
HNS CPU Speedhns_benchmark_results.jsonβœ… ValidatedHigh200x overhead (not 25x as reported)
HNS CPU Accumulativehns_benchmark_results.json❌ FAILEDCriticalResult = 0.0, Error = 100%
HNS GPU Operations⚠️ Missing JSONπŸ“‹ PendingLowClaims in MD without data backing
System Evolution Speedsystem_benchmark_results.jsonβœ… ValidatedHighData matches report
GPU Complete Systemgpu_complete_system_benchmark_results.jsonβœ… ValidatedHighData matches report
Optimized GPUoptimized_gpu_benchmark_results.json⚠️ InconsistentMedium16x speedup (reported as 65x)
PyTorch Comparison❌ Does not existπŸ“‹ Not RunNoneTheoretical projection only
Memory Efficiencysystem_benchmark_results.jsonβœ… ValidatedMediumPartial data available
Consciousness Parameters⚠️ IncompleteπŸ“‹ PendingLowNo validation runs found

Critical Issues Identified

🚨 ISSUE 1: HNS Accumulative Test Complete Failure

Location: Benchmarks/hns_benchmark_results.json lines 52-66

Problem:

"accumulative": {
  "iterations": 1000000,
  "expected": 1.0,
  "hns": {
    "result": 0.0,        // ❌ WRONG - Should be ~1.0
    "error": 1.0,         // ❌ 100% error
    "time": 6.485027699998682
  }
}

Impact: Critical - This test demonstrates fundamental HNS implementation failure on CPU.

Status: ❌ Test failed - Implementation bug or measurement error

Required Action:

  1. Debug HNS accumulative logic
  2. Re-run test with fixed implementation
  3. Update JSON with correct results
  4. Remove claim "maintains same precision as float" until validated

🚨 ISSUE 2: CPU Overhead Misreported

Location: Benchmarks/BENCHMARK_REPORT.md line 74

Claimed: "~25x slower on CPU"

Actual Data (from JSON):

"speed": {
  "add": {"overhead": 214.75892549073149},    // 215x overhead
  "scale": {"overhead": 201.59841724913096}   // 202x overhead
}

Discrepancy: Reported overhead is 8-10x better than reality

Impact: High - Misleading performance expectations

Required Action: Correct all references to "25x overhead" β†’ "200x overhead"


🚨 ISSUE 3: Optimization Speedup Discrepancy

Location: reports/FINAL_OPTIMIZATION_SUMMARY.md line 42

Claimed: "65.6x improvement"

Actual Data (from JSON):

"comparison": {
  "speedup": 15.963884373522912,              // 16x speedup
  "throughput_improvement": 15.963884373522912
}

Discrepancy: Claimed speedup is 4x higher than measured

Impact: High - Significantly inflated optimization claims

Root Cause Analysis:

  • Line 42: "1,770M/s" may be from different test configuration
  • Line 78: Claims "1,770M neuronas/s (1M neuronas)" unclear source
  • Possible confusion between different network sizes

Required Action:

  1. Verify source of 1,770M/s claim
  2. If from valid test, clarify which configuration
  3. Otherwise, correct to 16x with proper context

⚠️ ISSUE 4: GPU HNS Benchmarks Without JSON Backing

Location: Benchmarks/GPU_BENCHMARK_REPORT.md

Claims Made:

  • "HNS is 1.21x FASTER than float in addition" (line 50)
  • "2,589.17M ops/s" throughput (line 48)
  • Specific timing data for HNS vs Float operations

Problem: No corresponding JSON file found to validate these claims

Possible Explanations:

  1. Test was run but JSON not saved
  2. Test was run but results lost
  3. Numbers are theoretical projections
  4. Test configuration differs from saved results

Required Action:

  1. Search for any GPU HNS benchmark JSONs
  2. If not found, mark as "Pending Validation"
  3. Re-run benchmark and save JSON
  4. Add disclaimer until validated

⚠️ ISSUE 5: PyTorch Comparison - No Actual Benchmark

Location: README (3).md lines 339-351

Claims:

| Matrix Mult (2048Γ—2048) | 80.03ms | 1.84ms | **43.5Γ—** |
| Self-Attention (1024 seq) | 45.2ms | 1.8ms | **25.1Γ—** |
| Synaptic Update (10^6) | 23.1ms | 0.9ms | **25.7Γ—** |
| Full Evolution Step | 500ms | 15ms | **33.3Γ—** |

Problem:

  • No JSON file with PyTorch comparison results
  • benchmark_comparative.py exists but no output JSON found
  • Numbers appear suspiciously round (1.8ms, 0.9ms)

Status: πŸ“Š Theoretical projection or placeholder data

Required Action:

  1. Mark table with "⚠️ Theoretical - Pending Validation"
  2. Run actual PyTorch comparison benchmarks
  3. Save results to comparative_benchmark_results.json
  4. Update table with real data

⚠️ ISSUE 6: Memory Efficiency Claims

Location: README (3).md lines 347-351

Claims: "88.7% memory reduction"

Available Data: Limited validation in system_benchmark_results.json

Status: Partially validated but needs comprehensive testing

Required Action: Run memory profiling across multiple scales


Validated Benchmarks (High Confidence)

βœ… 1. System Evolution Speed

JSON: system_benchmark_results.json

Validated Results:

  • 65,536 neurons: 8.24M neurons/s (validated βœ“)
  • 262,144 neurons: 12.14M neurons/s (validated βœ“)
  • 1,048,576 neurons: 10.65M neurons/s (validated βœ“)

Confidence: High - Data matches reports


βœ… 2. GPU Complete System

JSON: gpu_complete_system_benchmark_results.json

Validated Results:

  • 65K neurons: 8.41M neurons/s @ 0.21 GFLOPS (validated βœ“)
  • 262K neurons: 12.53M neurons/s @ 0.31 GFLOPS (validated βœ“)
  • 1M neurons: 11.53M neurons/s @ 0.29 GFLOPS (validated βœ“)

Confidence: High - Data matches reports


βœ… 3. HNS CPU Speed (with corrections)

JSON: hns_benchmark_results.json

Validated Results:

  • Addition overhead: 214.76x (NOT 25x)
  • Scaling overhead: 201.60x (NOT 22x)
  • Batch throughput: 13.93M ops/s

Confidence: High - Data valid, but reports need correction


Discrepancies Summary

Report LocationClaimed ValueJSON ValueRatioSeverity
BENCHMARK_REPORT.md:7425x overhead215x overhead8.6xπŸ”΄ High
BENCHMARK_REPORT.md:7422x overhead202x overhead9.2xπŸ”΄ High
FINAL_OPTIMIZATION_SUMMARY.md:4265x speedup16x speedup4.1xπŸ”΄ High
GPU_BENCHMARK_REPORT.md:481.21x fasterNo JSONN/A🟑 Medium
README (3).md:34043.5Γ— speedupNo JSONN/A🟑 Medium
BENCHMARK_REPORT.md:52Same precision100% errorβˆžπŸ”΄ Critical

Recommendations

Immediate Actions Required

Priority 1 - Critical:

  1. βœ… Fix or explain HNS accumulative test failure
  2. βœ… Correct all "25x" references to "200x"
  3. βœ… Correct "65x" speedup to "16x" with context
  4. βœ… Add FAILED warning to HNS accumulative in reports

Priority 2 - High: 5. πŸ“‹ Re-run GPU HNS benchmarks and save JSON 6. πŸ“‹ Run actual PyTorch comparison or mark as theoretical 7. πŸ“‹ Add disclaimers to all unvalidated claims 8. πŸ“‹ Create benchmark reproduction guide

Priority 3 - Medium: 9. πŸ“‹ Run comprehensive memory profiling 10. πŸ“‹ Add statistical significance (std dev) to all benchmarks 11. πŸ“‹ Document system configuration for reproducibility 12. πŸ“‹ Create automated validation pipeline


Validation Methodology for Future Benchmarks

Required Standards

For each benchmark claim:

  1. βœ… JSON Data Required: Raw data must be saved
  2. βœ… Multiple Runs: Minimum 10 iterations
  3. βœ… Statistical Analysis: Report mean Β± std dev
  4. βœ… Configuration Documentation: GPU, driver, OS versions
  5. βœ… Reproducibility: Include script + instructions
  6. βœ… Timestamp: Date, time, git commit hash
  7. βœ… Warmup: 3-5 warmup iterations before measurement

Benchmark Checklist

Before publishing any benchmark claim:

  • JSON file with raw data exists
  • Multiple runs executed (n β‰₯ 10)
  • Standard deviation < 10%
  • System configuration documented
  • Reproduction script tested
  • Results peer-reviewed internally
  • Disclaimer added if preliminary

Scientific Integrity Statement

This validation report prioritizes scientific accuracy over marketing appeal. We acknowledge:

  1. Limitations: Several benchmarks require re-validation
  2. Failed Tests: HNS accumulative test shows implementation issues
  3. Overhead Reality: CPU overhead is 200x, not 25x as initially reported
  4. Pending Validation: GPU HNS and PyTorch comparisons need proper testing
  5. Transparency: All discrepancies openly disclosed

This approach ensures:

  • Trustworthy peer review process
  • Reproducible results for independent validation
  • Solid foundation for scientific publication
  • Maintained reputation and credibility

Next Steps

Before Publication

  1. Re-run Failed Tests: Fix and validate HNS accumulative
  2. Complete Missing Benchmarks: GPU HNS, PyTorch comparison
  3. Correct All Reports: Update with accurate data
  4. Add Disclaimers: Mark theoretical vs validated data
  5. Create Reproduction Package: Scripts + data + documentation
  6. Independent Validation: Share with peers for verification

For Peer Review

  1. Submit Raw Data: Provide all JSON files as supplementary material
  2. Document Methodology: Detailed benchmark procedures
  3. Acknowledge Limitations: Clearly state what's validated vs pending
  4. Invite Replication: Provide tools for independent verification

Conclusion

The NeuroCHIMERA project demonstrates promising results in validated benchmarks (system evolution, GPU performance). However, several critical issues require attention:

  • Critical: HNS accumulative test failure
  • High: Overhead and speedup claims need correction
  • Medium: GPU HNS and PyTorch benchmarks need validation

Recommendation: Address critical issues before publication. Current state is suitable for preprint with appropriate disclaimers, but requires validation for peer-reviewed journal submission.

Timeline Estimate:

  • Fix critical issues: 1-2 weeks
  • Re-run benchmarks: 1 week
  • Update documentation: 3-5 days
  • Internal review: 1 week
  • Total: 4-6 weeks to publication-ready state

Report Prepared By: Scientific Audit Process Review Status: Complete Last Updated: 2025-12-01 Version: 1.0

Β© 2025 All rights reservedBuilt with DataHub Cloud

Built with LogoDataHub Cloud