Contributing to NeuroCHIMERA
Contributing to NeuroCHIMERA
Thank you for your interest in contributing to NeuroCHIMERA! This document provides guidelines and instructions for contributing to our GPU-native neuromorphic computing framework.
๐ค Types of Contributions
We welcome contributions in the following areas:
๐ง Research Contributions
- Consciousness Parameter Extensions: Implement additional metrics from consciousness theories
- Theoretical Validation: Mathematical proofs or theoretical analysis of parameter relationships
- Behavioral Correlates: Design external tasks that correlate with internal consciousness parameters
- Comparative Studies: Validation against other consciousness measurement frameworks
๐ป Technical Contributions
- Performance Optimization: Multi-GPU scaling, shader optimization, memory efficiency
- Hardware Support: Additional GPU architectures, neuromorphic chip integration
- Software Features: New simulation capabilities, monitoring tools, visualization
- Bug Fixes: Issues reported in our GitHub issue tracker
๐ Documentation
- Tutorials: Step-by-step guides for different use cases
- Examples: Code samples and case studies
- Theoretical Explanations: Clear documentation of consciousness theories and implementations
- API Documentation: Improved docstrings and reference materials
๐ Getting Started
Development Environment Setup
-
Fork the Repository
# Fork on GitHub, then clone your fork git clone https://github.com/your-username/neurochimera.git cd neurochimera -
Install Development Dependencies
# Install core dependencies pip install -r requirements.txt # Install development tools pip install -r requirements-dev.txt # Install pre-commit hooks pre-commit install -
Verify Installation
# Run tests pytest tests/ # Run linting flake8 neurochimera/ black neurochimera/ # Validate consciousness simulation python validate_consciousness.py --epochs 100 --neurons 4096
Development Workflow
-
Create a Feature Branch
git checkout -b feature/your-feature-name -
Make Your Changes
- Follow our coding standards (see below)
- Add tests for new functionality
- Update documentation as needed
-
Test Your Changes
# Run the test suite pytest tests/ # Run specific test file pytest tests/test_hns_precision.py -v # Run performance benchmarks python benchmarks/performance_test.py -
Submit a Pull Request
- Ensure all tests pass
- Include clear description of changes
- Reference any related issues
๐ Coding Standards
Python Code Style
- Black Formatting: Use
black neurochimera/for automatic formatting - PEP 8 Compliance: Follow Python style guidelines
- Type Hints: Use type annotations for all functions
- Docstrings: Follow NumPy docstring format
# Example of good coding style
def compute_consciousness_parameters(
neural_state: np.ndarray,
connectivity_matrix: np.ndarray,
thresholds: Dict[str, float]
) -> ConsciousnessParameters:
"""Compute all five consciousness parameters from neural state.
Parameters
----------
neural_state : np.ndarray
Current activation state of neurons (shape: n_neurons,)
connectivity_matrix : np.ndarray
Weighted adjacency matrix (shape: n_neurons, n_neurons)
thresholds : Dict[str, float]
Critical thresholds for each parameter
Returns
-------
ConsciousnessParameters
Named tuple containing all five parameter values
Examples
--------
>>> state = np.random.rand(65536)
>>> weights = np.random.randn(65536, 65536) * 0.1
>>> thresholds = {'phi': 0.65, 'connectivity': 15.0}
>>> params = compute_consciousness_parameters(state, weights, thresholds)
"""
GLSL Shader Guidelines
- Version Specification: Use
#version 430or higher - Clear Variable Names: Use descriptive names for textures and uniforms
- Comments: Document complex mathematical operations
- Optimization: Minimize control flow divergence
// Example shader structure
#version 430
layout(local_size_x = 32, local_size_y = 32) in;
// Input textures
layout(binding = 0) uniform sampler2D neural_state_tex;
layout(binding = 1) uniform sampler2D weight_tex;
// Output buffer
layout(std430, binding = 2) buffer Output {
vec4 output_data[];
};
void main() {
ivec2 coord = ivec2(gl_GlobalInvocationID.xy);
// HNS addition with carry propagation
vec4 a = texelFetch(neural_state_tex, coord, 0);
vec4 b = texelFetch(weight_tex, coord, 0);
// Perform hierarchical arithmetic
vec4 result = hns_add(a, b);
output_data[gl_GlobalInvocationID.x] = result;
}
๐งช Testing Guidelines
Test Structure
- Unit Tests: Test individual functions and classes
- Integration Tests: Test component interactions
- Performance Tests: Benchmark critical operations
- Validation Tests: Verify consciousness emergence claims
Writing Tests
# Example test structure
def test_hns_precision():
"""Test HNS accumulative precision over 1M iterations."""
# Initialize test value
initial_value = np.array([0.000001, 0, 0, 0], dtype=np.float32)
# Perform accumulative addition
result = initial_value.copy()
for _ in range(1000000):
result = hns_add(result, initial_value)
# Verify perfect precision
expected = np.array([1.0, 0, 0, 0], dtype=np.float32)
assert np.allclose(result, expected, rtol=0, atol=0), \
"HNS should maintain perfect precision"
def test_consciousness_emergence():
"""Test that consciousness parameters emerge within expected timeframe."""
engine = ConsciousnessEngine(neurons=65536)
results = engine.simulate(epochs=10000, monitor_parameters=True)
# Check emergence timing
assert 5000 <= results.emerged_at_epoch <= 8000, \
"Consciousness should emerge within expected timeframe"
# Check parameter stability
assert results.is_stable(), \
"Parameters should stabilize after emergence"
Performance Benchmarking
# Run performance tests
python benchmarks/hns_throughput.py --size 1000000 --iterations 100
# Profile GPU utilization
nvidia-smi dmon -s pucvmet -d 10 # Monitor during simulation
# Compare with baselines
python benchmarks/framework_comparison.py
๐ Pull Request Process
Before Submitting
-
Run All Tests: Ensure no regressions
pytest tests/ -v -
Check Code Quality
flake8 neurochimera/ black neurochimera/ --check mypy neurochimera/ -
Update Documentation: Add docstrings and update README if needed
PR Template
## Description
Brief description of changes and motivation.
## Type of Change
- [ ] Bug fix
- [ ] New feature
- [ ] Breaking change
- [ ] Documentation update
- [ ] Performance improvement
## Testing
- [ ] Unit tests pass
- [ ] Integration tests pass
- [ ] Performance benchmarks included
- [ ] Consciousness validation tested
## Related Issues
Closes #123
๐ฏ Contribution Ideas
Beginner-Friendly Issues
- Documentation: Improve API documentation and examples
- Testing: Add test cases for edge conditions
- Visualization: Create better plotting functions for parameter evolution
- Error Handling: Improve error messages and validation
Advanced Contributions
- Multi-GPU Support: Implement distributed consciousness simulation
- New Parameters: Add consciousness metrics from recent theories
- Hardware Optimization: CUDA/OpenCL specific optimizations
- Behavioral Validation: Design external consciousness tests
Research Collaborations
We welcome collaborations with:
- Consciousness Researchers: Validate and extend our parameter framework
- Neuromorphic Engineers: Hardware implementation and optimization
- Neuroscientists: Biological validation and interpretation
- Philosophers: Ethical implications and theoretical foundations
๐ Getting Help
Communication Channels
- GitHub Issues: Bug reports and feature requests
- GitHub Discussions: Questions and general discussion
- Email: Direct contact for sensitive issues
Before Asking for Help
- Check Documentation: README and code comments
- Search Issues: See if your question has been asked before
- Provide Context: Include system info, error messages, and minimal examples
Example Help Request
**Environment**
- OS: Ubuntu 22.04
- GPU: NVIDIA RTX 3090
- Python: 3.10.12
- NeuroCHIMERA: v1.0.0
**Problem**
Consciousness parameters not emerging in simulation with 32K neurons.
**Code**
```python
engine = ConsciousnessEngine(neurons=32768)
results = engine.simulate(epochs=5000)
print(results.emerged_at_epoch) # Returns None
Expected: Emergence should occur around epoch 3000-6000 Actual: No emergence detected
## ๐ Recognition
Contributors will be recognized in our:
- **README.md**: List of contributors
- **Release Notes**: Significant contributions highlighted
- **Research Papers**: Co-authorship for substantial research contributions
- **Project Website**: Contributor profiles and impact stories
## ๐ Code of Conduct
We are committed to providing a welcoming and inclusive environment for all contributors. Please read our [Code of Conduct](CODE_OF_CONDUCT.md) before participating.
### Key Principles
- **Respect**: Treat all contributors with respect and professionalism
- **Inclusivity**: Welcome contributions from people of all backgrounds and experience levels
- **Collaboration**: Work together to build the best possible framework
- **Quality**: Maintain high standards for code, documentation, and research
## ๐ Thank You
Thank you for contributing to NeuroCHIMERA! Your efforts help advance the scientific understanding of consciousness and enable new possibilities in neuromorphic computing.
Together, we're building a framework that bridges theoretical neuroscience with practical GPU computing, opening new avenues for consciousness research and artificial intelligence.
---
*This contributing guide is itself open to contributions! Please suggest improvements via pull requests.*