Logo

Contributing to NeuroCHIMERA

Contributing to NeuroCHIMERA

Thank you for your interest in contributing to NeuroCHIMERA! This document provides guidelines and instructions for contributing to our GPU-native neuromorphic computing framework.

๐Ÿค Types of Contributions

We welcome contributions in the following areas:

๐Ÿง  Research Contributions

  • Consciousness Parameter Extensions: Implement additional metrics from consciousness theories
  • Theoretical Validation: Mathematical proofs or theoretical analysis of parameter relationships
  • Behavioral Correlates: Design external tasks that correlate with internal consciousness parameters
  • Comparative Studies: Validation against other consciousness measurement frameworks

๐Ÿ’ป Technical Contributions

  • Performance Optimization: Multi-GPU scaling, shader optimization, memory efficiency
  • Hardware Support: Additional GPU architectures, neuromorphic chip integration
  • Software Features: New simulation capabilities, monitoring tools, visualization
  • Bug Fixes: Issues reported in our GitHub issue tracker

๐Ÿ“š Documentation

  • Tutorials: Step-by-step guides for different use cases
  • Examples: Code samples and case studies
  • Theoretical Explanations: Clear documentation of consciousness theories and implementations
  • API Documentation: Improved docstrings and reference materials

๐Ÿš€ Getting Started

Development Environment Setup

  1. Fork the Repository

    # Fork on GitHub, then clone your fork
    git clone https://github.com/your-username/neurochimera.git
    cd neurochimera
    
  2. Install Development Dependencies

    # Install core dependencies
    pip install -r requirements.txt
    
    # Install development tools
    pip install -r requirements-dev.txt
    
    # Install pre-commit hooks
    pre-commit install
    
  3. Verify Installation

    # Run tests
    pytest tests/
    
    # Run linting
    flake8 neurochimera/
    black neurochimera/
    
    # Validate consciousness simulation
    python validate_consciousness.py --epochs 100 --neurons 4096
    

Development Workflow

  1. Create a Feature Branch

    git checkout -b feature/your-feature-name
    
  2. Make Your Changes

    • Follow our coding standards (see below)
    • Add tests for new functionality
    • Update documentation as needed
  3. Test Your Changes

    # Run the test suite
    pytest tests/
    
    # Run specific test file
    pytest tests/test_hns_precision.py -v
    
    # Run performance benchmarks
    python benchmarks/performance_test.py
    
  4. Submit a Pull Request

    • Ensure all tests pass
    • Include clear description of changes
    • Reference any related issues

๐Ÿ“ Coding Standards

Python Code Style

  • Black Formatting: Use black neurochimera/ for automatic formatting
  • PEP 8 Compliance: Follow Python style guidelines
  • Type Hints: Use type annotations for all functions
  • Docstrings: Follow NumPy docstring format
# Example of good coding style
def compute_consciousness_parameters(
    neural_state: np.ndarray, 
    connectivity_matrix: np.ndarray,
    thresholds: Dict[str, float]
) -> ConsciousnessParameters:
    """Compute all five consciousness parameters from neural state.
    
    Parameters
    ----------
    neural_state : np.ndarray
        Current activation state of neurons (shape: n_neurons,)
    connectivity_matrix : np.ndarray  
        Weighted adjacency matrix (shape: n_neurons, n_neurons)
    thresholds : Dict[str, float]
        Critical thresholds for each parameter
        
    Returns
    -------
    ConsciousnessParameters
        Named tuple containing all five parameter values
        
    Examples
    --------
    >>> state = np.random.rand(65536)
    >>> weights = np.random.randn(65536, 65536) * 0.1
    >>> thresholds = {'phi': 0.65, 'connectivity': 15.0}
    >>> params = compute_consciousness_parameters(state, weights, thresholds)
    """

GLSL Shader Guidelines

  • Version Specification: Use #version 430 or higher
  • Clear Variable Names: Use descriptive names for textures and uniforms
  • Comments: Document complex mathematical operations
  • Optimization: Minimize control flow divergence
// Example shader structure
#version 430
layout(local_size_x = 32, local_size_y = 32) in;

// Input textures
layout(binding = 0) uniform sampler2D neural_state_tex;
layout(binding = 1) uniform sampler2D weight_tex;

// Output buffer
layout(std430, binding = 2) buffer Output {
    vec4 output_data[];
};

void main() {
    ivec2 coord = ivec2(gl_GlobalInvocationID.xy);
    
    // HNS addition with carry propagation
    vec4 a = texelFetch(neural_state_tex, coord, 0);
    vec4 b = texelFetch(weight_tex, coord, 0);
    
    // Perform hierarchical arithmetic
    vec4 result = hns_add(a, b);
    
    output_data[gl_GlobalInvocationID.x] = result;
}

๐Ÿงช Testing Guidelines

Test Structure

  • Unit Tests: Test individual functions and classes
  • Integration Tests: Test component interactions
  • Performance Tests: Benchmark critical operations
  • Validation Tests: Verify consciousness emergence claims

Writing Tests

# Example test structure
def test_hns_precision():
    """Test HNS accumulative precision over 1M iterations."""
    # Initialize test value
    initial_value = np.array([0.000001, 0, 0, 0], dtype=np.float32)
    
    # Perform accumulative addition
    result = initial_value.copy()
    for _ in range(1000000):
        result = hns_add(result, initial_value)
    
    # Verify perfect precision
    expected = np.array([1.0, 0, 0, 0], dtype=np.float32)
    assert np.allclose(result, expected, rtol=0, atol=0), \
        "HNS should maintain perfect precision"

def test_consciousness_emergence():
    """Test that consciousness parameters emerge within expected timeframe."""
    engine = ConsciousnessEngine(neurons=65536)
    results = engine.simulate(epochs=10000, monitor_parameters=True)
    
    # Check emergence timing
    assert 5000 <= results.emerged_at_epoch <= 8000, \
        "Consciousness should emerge within expected timeframe"
    
    # Check parameter stability
    assert results.is_stable(), \
        "Parameters should stabilize after emergence"

Performance Benchmarking

# Run performance tests
python benchmarks/hns_throughput.py --size 1000000 --iterations 100

# Profile GPU utilization
nvidia-smi dmon -s pucvmet -d 10  # Monitor during simulation

# Compare with baselines
python benchmarks/framework_comparison.py

๐Ÿ“‹ Pull Request Process

Before Submitting

  1. Run All Tests: Ensure no regressions

    pytest tests/ -v
    
  2. Check Code Quality

    flake8 neurochimera/
    black neurochimera/ --check
    mypy neurochimera/
    
  3. Update Documentation: Add docstrings and update README if needed

PR Template

## Description
Brief description of changes and motivation.

## Type of Change
- [ ] Bug fix
- [ ] New feature  
- [ ] Breaking change
- [ ] Documentation update
- [ ] Performance improvement

## Testing
- [ ] Unit tests pass
- [ ] Integration tests pass
- [ ] Performance benchmarks included
- [ ] Consciousness validation tested

## Related Issues
Closes #123

๐ŸŽฏ Contribution Ideas

Beginner-Friendly Issues

  • Documentation: Improve API documentation and examples
  • Testing: Add test cases for edge conditions
  • Visualization: Create better plotting functions for parameter evolution
  • Error Handling: Improve error messages and validation

Advanced Contributions

  • Multi-GPU Support: Implement distributed consciousness simulation
  • New Parameters: Add consciousness metrics from recent theories
  • Hardware Optimization: CUDA/OpenCL specific optimizations
  • Behavioral Validation: Design external consciousness tests

Research Collaborations

We welcome collaborations with:

  • Consciousness Researchers: Validate and extend our parameter framework
  • Neuromorphic Engineers: Hardware implementation and optimization
  • Neuroscientists: Biological validation and interpretation
  • Philosophers: Ethical implications and theoretical foundations

๐Ÿ“ž Getting Help

Communication Channels

  • GitHub Issues: Bug reports and feature requests
  • GitHub Discussions: Questions and general discussion
  • Email: Direct contact for sensitive issues

Before Asking for Help

  1. Check Documentation: README and code comments
  2. Search Issues: See if your question has been asked before
  3. Provide Context: Include system info, error messages, and minimal examples

Example Help Request

**Environment**
- OS: Ubuntu 22.04
- GPU: NVIDIA RTX 3090
- Python: 3.10.12
- NeuroCHIMERA: v1.0.0

**Problem**
Consciousness parameters not emerging in simulation with 32K neurons.

**Code**
```python
engine = ConsciousnessEngine(neurons=32768)
results = engine.simulate(epochs=5000)
print(results.emerged_at_epoch)  # Returns None

Expected: Emergence should occur around epoch 3000-6000 Actual: No emergence detected


## ๐Ÿ† Recognition

Contributors will be recognized in our:
- **README.md**: List of contributors
- **Release Notes**: Significant contributions highlighted
- **Research Papers**: Co-authorship for substantial research contributions
- **Project Website**: Contributor profiles and impact stories

## ๐Ÿ“œ Code of Conduct

We are committed to providing a welcoming and inclusive environment for all contributors. Please read our [Code of Conduct](CODE_OF_CONDUCT.md) before participating.

### Key Principles
- **Respect**: Treat all contributors with respect and professionalism
- **Inclusivity**: Welcome contributions from people of all backgrounds and experience levels
- **Collaboration**: Work together to build the best possible framework
- **Quality**: Maintain high standards for code, documentation, and research

## ๐Ÿ™ Thank You

Thank you for contributing to NeuroCHIMERA! Your efforts help advance the scientific understanding of consciousness and enable new possibilities in neuromorphic computing.

Together, we're building a framework that bridges theoretical neuroscience with practical GPU computing, opening new avenues for consciousness research and artificial intelligence.

---

*This contributing guide is itself open to contributions! Please suggest improvements via pull requests.*

ยฉ 2025 All rights reservedBuilt with DataHub Cloud

Built with LogoDataHub Cloud