Logo

Phase 3 & 4 Completion Guide - Immediate Execution

Phase 3 & 4 Completion Guide - Immediate Execution

Date: 2025-12-01 Current Status: Phase 3 (60%), Phase 4 (75%) Target: Phase 3 (100%), Phase 4 (100%) Estimated Time: 8-12 hours of execution


🎯 Objective

Complete all remaining tasks for Phases 3 (Benchmarking) and 4 (Optimization) to reach 100% completion, enabling immediate progression to Phase 5 (Scientific Validation).


πŸ“‹ Task Overview

Critical Path Tasks (Must Complete)

#TaskPriorityTimeStatus
1Fix HNS accumulative testP02-4hπŸ”΄ Critical
2GPU HNS benchmarks + JSONP11-2h🟑 High
3PyTorch comparison realP12-3h🟑 High
4Verify speedup 65x vs 16xP11-2h🟑 High
5Statistical significanceP22-3h🟑 Medium
6Memory profiling completeP21-2h🟑 Medium
7Final documentation passP21-2h🟑 Medium

Total Estimated Time: 10-18 hours


TASK 1: Fix HNS Accumulative Test (P0 - CRITICAL) πŸ”΄

Current Issue: Test returns 0.0 instead of expected 1.0 (100% error)

File: hierarchical_number.py

Diagnosis Steps

  1. Read the accumulative test code:

    # Location in hns_benchmark.py
    python -c "import json; print(json.load(open('Benchmarks/hns_benchmark_results.json'))['accumulative'])"
    
  2. Add debug logging to HNS accumulation:

    Create debug script: debug_hns_accumulative.py

    from hierarchical_number import HNumber, hns_add, hns_normalize
    
    # Test accumulation with detailed logging
    def debug_accumulative(iterations=100):
        """Test HNS accumulation with logging"""
        increment = 0.00001  # Start with larger increment
    
        # Initialize
        result = HNumber([0.0, 0.0, 0.0, 0.0])
        increment_hns = HNumber.from_float(increment)
    
        print(f"Starting accumulation test:")
        print(f"Iterations: {iterations}")
        print(f"Increment: {increment}")
        print(f"Expected: {iterations * increment}")
        print(f"Initial HNS: {result.to_vec4()}")
        print(f"Increment HNS: {increment_hns.to_vec4()}")
    
        # Accumulate with periodic checks
        for i in range(iterations):
            result = hns_add(result, increment_hns)
    
            # Check every 10 iterations
            if i % 10 == 0 or i < 5:
                result_float = result.to_float()
                print(f"Iteration {i}: {result.to_vec4()} = {result_float}")
    
                # Check for zero
                if result_float == 0.0 and i > 0:
                    print(f"ERROR: Result became 0.0 at iteration {i}!")
                    print(f"Last HNS: {result.to_vec4()}")
                    break
    
        final = result.to_float()
        expected = iterations * increment
        error = abs(final - expected)
    
        print(f"\nFinal Results:")
        print(f"HNS vec4: {result.to_vec4()}")
        print(f"HNS float: {final}")
        print(f"Expected: {expected}")
        print(f"Error: {error}")
        print(f"Relative error: {error/expected*100:.2f}%")
    
        return final, expected, error
    
    if __name__ == "__main__":
        # Test with increasing iterations
        for n in [10, 100, 1000, 10000]:
            print("\n" + "="*60)
            debug_accumulative(n)
    
  3. Run debug script:

    python debug_hns_accumulative.py
    

Expected Issues & Fixes

Issue 1: Precision loss in from_float()

  • Symptom: Very small numbers (0.000001) become 0 in HNS
  • Fix: Adjust BASE or use scaling factor

Issue 2: Normalization removing small values

  • Symptom: Values < 1.0 get zeroed during normalization
  • Fix: Handle fractional parts correctly

Issue 3: Accumulation overflow/underflow

  • Symptom: Result resets to 0 after many iterations
  • Fix: Check carry propagation logic

Quick Fix Template

If issue is in hierarchical_number.py, add fractional support:

def hns_add(vec_a: List[float], vec_b: List[float]) -> List[float]:
    """HNS hierarchical addition with fractional support."""
    # Add components
    raw_sum = [x + y for x, y in zip(vec_a, vec_b)]

    # Normalize with proper fractional handling
    return hns_normalize(raw_sum, keep_fractional=True)

def hns_normalize(vec4: List[float], keep_fractional: bool = False) -> List[float]:
    """Normalize HNS with optional fractional preservation."""
    r, g, b, a = vec4

    # Handle fractional part
    if keep_fractional and r < 1.0 and g == 0 and b == 0 and a == 0:
        # Keep small fractional values
        return [r, g, b, a]

    # Standard carry propagation
    carry0 = math.floor(r * INV_BASE)
    r = r - (carry0 * BASE)
    g += carry0

    carry1 = math.floor(g * INV_BASE)
    g = g - (carry1 * BASE)
    b += carry1

    carry2 = math.floor(b * INV_BASE)
    b = b - (carry2 * BASE)
    a += carry2

    return [r, g, b, a]

Validation

After fix, run full test:

python Benchmarks/hns_benchmark.py

Expected output:

"accumulative": {
  "iterations": 1000000,
  "expected": 1.0,
  "hns": {
    "result": 1.0000000,  // Should be ~1.0
    "error": < 0.00001,   // Should be very small
    "time": ...
  }
}

Deliverable: βœ… HNS accumulative test passing with error < 0.01%


TASK 2: GPU HNS Benchmarks with JSON (P1) 🟑

Objective: Execute GPU HNS benchmarks and save JSON validation data

Execution Script

Create: run_gpu_hns_validation.py

"""
GPU HNS Benchmark Validation
Runs GPU HNS benchmarks 10+ times for statistical significance
Saves JSON results for validation
"""

import json
import time
import numpy as np
from pathlib import Path
from datetime import datetime

# Import benchmark script
import sys
sys.path.insert(0, 'Benchmarks')
from hns_gpu_benchmark import GPUHNSBenchmark

def run_validation(runs=10):
    """Run GPU HNS benchmarks multiple times"""

    print("="*70)
    print("GPU HNS BENCHMARK VALIDATION")
    print("="*70)
    print(f"Runs: {runs}")
    print(f"Date: {datetime.now().isoformat()}")
    print("="*70)

    benchmark = GPUHNSBenchmark()

    results = {
        'metadata': {
            'date': datetime.now().isoformat(),
            'runs': runs,
            'gpu': benchmark.get_gpu_info(),
        },
        'addition_speed': [],
        'scaling_speed': [],
        'precision_tests': []
    }

    # Run benchmarks multiple times
    for run in range(runs):
        print(f"\n--- Run {run+1}/{runs} ---")

        # Addition speed test
        print("Testing addition speed...")
        add_result = benchmark.test_addition_speed()
        results['addition_speed'].append(add_result)

        # Scaling speed test
        print("Testing scaling speed...")
        scale_result = benchmark.test_scaling_speed()
        results['scaling_speed'].append(scale_result)

        # Precision test (only once)
        if run == 0:
            print("Testing precision...")
            prec_result = benchmark.test_precision()
            results['precision_tests'] = prec_result

    # Calculate statistics
    add_times = [r['hns_time'] for r in results['addition_speed']]
    scale_times = [r['hns_time'] for r in results['scaling_speed']]

    results['statistics'] = {
        'addition': {
            'mean_time': np.mean(add_times),
            'std_time': np.std(add_times),
            'speedup_mean': np.mean([r['speedup'] for r in results['addition_speed']]),
            'speedup_std': np.std([r['speedup'] for r in results['addition_speed']]),
            'consistency': f"{np.std(add_times)/np.mean(add_times)*100:.1f}%"
        },
        'scaling': {
            'mean_time': np.mean(scale_times),
            'std_time': np.std(scale_times),
            'speedup_mean': np.mean([r['speedup'] for r in results['scaling_speed']]),
            'speedup_std': np.std([r['speedup'] for r in results['scaling_speed']]),
            'consistency': f"{np.std(scale_times)/np.mean(scale_times)*100:.1f}%"
        }
    }

    # Save results
    output_file = Path('Benchmarks/hns_gpu_benchmark_results.json')
    with open(output_file, 'w') as f:
        json.dump(results, f, indent=2)

    print("\n" + "="*70)
    print("RESULTS SUMMARY")
    print("="*70)
    print(f"Addition Speed:")
    print(f"  Mean speedup: {results['statistics']['addition']['speedup_mean']:.2f}x")
    print(f"  Std dev: {results['statistics']['addition']['speedup_std']:.3f}")
    print(f"  Consistency: {results['statistics']['addition']['consistency']}")

    print(f"\nScaling Speed:")
    print(f"  Mean speedup: {results['statistics']['scaling']['speedup_mean']:.2f}x")
    print(f"  Std dev: {results['statistics']['scaling']['speedup_std']:.3f}")
    print(f"  Consistency: {results['statistics']['scaling']['consistency']}")

    print(f"\nβœ… Results saved to: {output_file}")

    return results

if __name__ == "__main__":
    results = run_validation(runs=10)

Execute

python run_gpu_hns_validation.py

Expected Output:

  • JSON file: Benchmarks/hns_gpu_benchmark_results.json
  • Validation of 1.21x speedup claim (or correction)
  • Statistical significance < 5% std dev

Deliverable: βœ… GPU HNS benchmarks validated with JSON


TASK 3: PyTorch Comparative Benchmarks (P1) 🟑

Objective: Execute REAL PyTorch comparison (not theoretical)

Setup PyTorch

# Install PyTorch with CUDA support
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

Create Benchmark Script

Create: Benchmarks/pytorch_comparison_real.py

"""
Real PyTorch vs NeuroCHIMERA Comparison
Executes actual benchmarks on both frameworks
"""

import json
import time
import torch
import numpy as np
from datetime import datetime
import sys
sys.path.insert(0, '.')
from engine import NeuroCHIMERA, NeuroCHIMERAConfig

class PyTorchComparison:
    def __init__(self):
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        print(f"PyTorch device: {self.device}")

    def benchmark_matrix_mult(self, size=2048, runs=10):
        """Compare matrix multiplication"""
        print(f"\nMatrix Multiplication ({size}Γ—{size})...")

        # PyTorch
        torch.cuda.synchronize()
        a = torch.randn(size, size, device=self.device)
        b = torch.randn(size, size, device=self.device)

        # Warmup
        for _ in range(3):
            _ = torch.matmul(a, b)
        torch.cuda.synchronize()

        # Benchmark
        pytorch_times = []
        for _ in range(runs):
            torch.cuda.synchronize()
            start = time.perf_counter()
            result = torch.matmul(a, b)
            torch.cuda.synchronize()
            pytorch_times.append(time.perf_counter() - start)

        pytorch_mean = np.mean(pytorch_times) * 1000  # ms

        # NeuroCHIMERA (equivalent operation)
        neurons = size * size
        config = NeuroCHIMERAConfig(neurons=neurons, use_hns=True)
        brain = NeuroCHIMERA(config=config)

        # Warmup
        for _ in range(3):
            brain.evolve(iterations=1)

        # Benchmark
        chimera_times = []
        for _ in range(runs):
            start = time.perf_counter()
            brain.evolve(iterations=1)
            chimera_times.append(time.perf_counter() - start)

        chimera_mean = np.mean(chimera_times) * 1000  # ms

        brain.release()

        speedup = pytorch_mean / chimera_mean

        return {
            'operation': 'matrix_multiplication',
            'size': size,
            'pytorch_ms': pytorch_mean,
            'pytorch_std': np.std(pytorch_times) * 1000,
            'neurochimera_ms': chimera_mean,
            'neurochimera_std': np.std(chimera_times) * 1000,
            'speedup': speedup,
            'runs': runs
        }

    def benchmark_evolution(self, neurons=1000000, iterations=20, runs=10):
        """Compare evolution step"""
        print(f"\nEvolution Step ({neurons} neurons, {iterations} iterations)...")

        # PyTorch equivalent
        torch.cuda.synchronize()
        state = torch.randn(neurons, device=self.device)
        weights = torch.randn(neurons, neurons, device=self.device, sparse=True)

        # Warmup
        for _ in range(3):
            _ = torch.sigmoid(torch.sparse.mm(weights, state.unsqueeze(1)))
        torch.cuda.synchronize()

        # Benchmark
        pytorch_times = []
        for _ in range(runs):
            torch.cuda.synchronize()
            start = time.perf_counter()
            for _ in range(iterations):
                state = torch.sigmoid(torch.sparse.mm(weights, state.unsqueeze(1)).squeeze())
            torch.cuda.synchronize()
            pytorch_times.append(time.perf_counter() - start)

        pytorch_mean = np.mean(pytorch_times) * 1000

        # NeuroCHIMERA
        config = NeuroCHIMERAConfig(neurons=neurons, use_hns=True)
        brain = NeuroCHIMERA(config=config)

        # Warmup
        for _ in range(3):
            brain.evolve(iterations=iterations)

        # Benchmark
        chimera_times = []
        for _ in range(runs):
            start = time.perf_counter()
            brain.evolve(iterations=iterations)
            chimera_times.append(time.perf_counter() - start)

        chimera_mean = np.mean(chimera_times) * 1000

        brain.release()

        speedup = pytorch_mean / chimera_mean

        return {
            'operation': 'evolution_step',
            'neurons': neurons,
            'iterations': iterations,
            'pytorch_ms': pytorch_mean,
            'pytorch_std': np.std(pytorch_times) * 1000,
            'neurochimera_ms': chimera_mean,
            'neurochimera_std': np.std(chimera_times) * 1000,
            'speedup': speedup,
            'runs': runs
        }

    def run_all_benchmarks(self):
        """Run all comparative benchmarks"""
        results = {
            'metadata': {
                'date': datetime.now().isoformat(),
                'pytorch_version': torch.__version__,
                'cuda_available': torch.cuda.is_available(),
                'gpu': torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'CPU'
            },
            'benchmarks': []
        }

        # Matrix multiplication
        results['benchmarks'].append(
            self.benchmark_matrix_mult(size=2048, runs=10)
        )

        # Evolution step
        results['benchmarks'].append(
            self.benchmark_evolution(neurons=1000000, iterations=20, runs=10)
        )

        # Save results
        with open('Benchmarks/pytorch_comparison_results.json', 'w') as f:
            json.dump(results, f, indent=2)

        # Print summary
        print("\n" + "="*70)
        print("PYTORCH COMPARISON RESULTS")
        print("="*70)
        for bench in results['benchmarks']:
            print(f"\n{bench['operation'].replace('_', ' ').title()}:")
            print(f"  PyTorch: {bench['pytorch_ms']:.2f}ms Β± {bench['pytorch_std']:.2f}ms")
            print(f"  NeuroCHIMERA: {bench['neurochimera_ms']:.2f}ms Β± {bench['neurochimera_std']:.2f}ms")
            if bench['speedup'] > 1:
                print(f"  βœ… NeuroCHIMERA is {bench['speedup']:.2f}x FASTER")
            else:
                print(f"  ⚠️ PyTorch is {1/bench['speedup']:.2f}x faster")

        return results

if __name__ == "__main__":
    comp = PyTorchComparison()
    comp.run_all_benchmarks()

Execute

python Benchmarks/pytorch_comparison_real.py

Deliverable: βœ… Real PyTorch comparison with honest results


TASK 4: Verify Speedup Discrepancy (P1) 🟑

Objective: Resolve 65x vs 16x discrepancy

Investigation Script

Create: verify_speedup_discrepancy.py

"""
Investigate the 65x vs 16x speedup discrepancy
Run comprehensive benchmarks to find source of 1,770M neurons/s claim
"""

import json
import time
import numpy as np
from engine import NeuroCHIMERA, NeuroCHIMERAConfig
from engine_optimized import OptimizedNeuroCHIMERA

def comprehensive_speedup_test():
    """Test multiple configurations to find 65x speedup source"""

    results = {
        'standard_tests': [],
        'optimized_tests': [],
        'stress_tests': []
    }

    # Test configurations
    configs = [
        {'neurons': 65536, 'name': '65K'},
        {'neurons': 262144, 'name': '262K'},
        {'neurons': 1048576, 'name': '1M'},
        {'neurons': 4194304, 'name': '4M'},
    ]

    for config_params in configs:
        neurons = config_params['neurons']
        name = config_params['name']

        print(f"\nTesting {name} neurons ({neurons})...")

        # Standard engine
        config = NeuroCHIMERAConfig(neurons=neurons, use_hns=True)
        brain_std = NeuroCHIMERA(config=config)

        # Warmup
        for _ in range(3):
            brain_std.evolve(iterations=5)

        # Benchmark standard
        times_std = []
        for _ in range(10):
            start = time.perf_counter()
            brain_std.evolve(iterations=1)
            times_std.append(time.perf_counter() - start)

        std_time = np.mean(times_std)
        std_throughput = neurons / std_time

        brain_std.release()

        # Optimized engine
        brain_opt = OptimizedNeuroCHIMERA(config=config)

        # Warmup
        for _ in range(3):
            brain_opt.evolve_optimized(iterations=5)

        # Benchmark optimized
        times_opt = []
        for _ in range(10):
            brain_opt.ctx.finish()  # Ensure clean state
            start = time.perf_counter()
            brain_opt.evolve_optimized(iterations=1)
            brain_opt.ctx.finish()
            times_opt.append(time.perf_counter() - start)

        opt_time = np.mean(times_opt)
        opt_throughput = neurons / opt_time

        brain_opt.release()

        # Calculate speedup
        speedup = std_time / opt_time

        result = {
            'neurons': neurons,
            'name': name,
            'standard_time_ms': std_time * 1000,
            'standard_throughput': std_throughput / 1e6,  # M neurons/s
            'optimized_time_ms': opt_time * 1000,
            'optimized_throughput': opt_throughput / 1e6,
            'speedup': speedup
        }

        results['standard_tests'].append(result)

        print(f"  Standard: {std_throughput/1e6:.2f}M neurons/s")
        print(f"  Optimized: {opt_throughput/1e6:.2f}M neurons/s")
        print(f"  Speedup: {speedup:.2f}x")

        # Check if this matches the 1,770M claim
        if abs(opt_throughput/1e6 - 1770) < 100:
            print(f"  ⭐ FOUND: This configuration produces ~1,770M neurons/s!")

    # Save results
    with open('speedup_verification_results.json', 'w') as f:
        json.dump(results, f, indent=2)

    print("\n" + "="*70)
    print("SPEEDUP VERIFICATION COMPLETE")
    print("="*70)
    print("Results saved to: speedup_verification_results.json")

    return results

if __name__ == "__main__":
    comprehensive_speedup_test()

Execute

python verify_speedup_discrepancy.py

Expected Outcome:

  • Identify which configuration produces 1,770M neurons/s
  • Validate 16x speedup for 1M neurons
  • Update documentation with clarification

Deliverable: βœ… Speedup discrepancy resolved and documented


TASK 5: Statistical Significance (P2) 🟑

Objective: Add mean Β± std dev to all benchmarks

Bulk Update Script

Create: add_statistical_significance.py

"""
Add statistical significance to all existing benchmarks
Re-run benchmarks 10 times and calculate std dev
"""

import json
import numpy as np
from pathlib import Path

# List of benchmark scripts
BENCHMARK_SCRIPTS = [
    'Benchmarks/benchmark_neurochimera_system.py',
    'Benchmarks/benchmark_gpu_complete_system.py',
    'Benchmarks/benchmark_optimized_gpu.py',
]

def add_stats_to_benchmark(script_path, runs=10):
    """Re-run benchmark with multiple runs for statistics"""
    print(f"\nProcessing: {script_path}")

    # Import and run benchmark
    # (Implement based on each benchmark's structure)
    pass

# This is a template - actual implementation depends on
# specific benchmark scripts structure

Manual Approach:

For each benchmark in Benchmarks/, modify to include:

# Run benchmark 10 times
results = []
for run in range(10):
    result = benchmark_function()
    results.append(result)

# Calculate statistics
mean = np.mean(results)
std = np.std(results)
consistency = "Excellent" if std/mean < 0.05 else "Good" if std/mean < 0.10 else "Poor"

output = {
    'mean': mean,
    'std': std,
    'consistency': consistency,
    'all_runs': results
}

Deliverable: βœ… All benchmarks report mean Β± std dev


TASK 6: Memory Profiling (P2) 🟑

Objective: Complete memory efficiency study across all scales

Memory Profiling Script

Create: Benchmarks/memory_profiling_comprehensive.py

"""
Comprehensive Memory Profiling
Tests memory usage across multiple scales
"""

import json
import torch
import numpy as np
from engine import NeuroCHIMERA, NeuroCHIMERAConfig

def profile_memory(neurons):
    """Profile memory for given network size"""
    print(f"\nProfiling {neurons:,} neurons...")

    # NeuroCHIMERA memory
    config = NeuroCHIMERAConfig(neurons=neurons, use_hns=True)
    brain = NeuroCHIMERA(config=config)

    # Get GPU memory (requires nvidia-smi or torch.cuda)
    if torch.cuda.is_available():
        torch.cuda.synchronize()
        neurochimera_memory = torch.cuda.memory_allocated() / 1024**2  # MB
    else:
        # Estimate from texture sizes
        texture_size = int(np.sqrt(neurons))
        neurochimera_memory = (texture_size ** 2 * 4 * 4) / 1024**2  # RGBA float32

    brain.release()

    # PyTorch equivalent memory
    pytorch_neurons = torch.randn(neurons, device='cuda' if torch.cuda.is_available() else 'cpu')
    pytorch_weights = torch.randn(neurons, neurons, device='cuda' if torch.cuda.is_available() else 'cpu')

    if torch.cuda.is_available():
        torch.cuda.synchronize()
        pytorch_memory = torch.cuda.memory_allocated() / 1024**2
    else:
        pytorch_memory = (neurons * 4 + neurons * neurons * 4) / 1024**2

    del pytorch_neurons, pytorch_weights

    # Calculate efficiency
    reduction = (pytorch_memory - neurochimera_memory) / pytorch_memory * 100

    return {
        'neurons': neurons,
        'neurochimera_mb': neurochimera_memory,
        'pytorch_mb': pytorch_memory,
        'reduction_percent': reduction,
        'bytes_per_neuron': neurochimera_memory * 1024**2 / neurons
    }

def run_comprehensive_profiling():
    """Profile multiple scales"""
    scales = [
        65536,      # 65K
        262144,     # 262K
        1048576,    # 1M
        4194304,    # 4M
        16777216,   # 16M
        67108864,   # 67M
    ]

    results = []
    for neurons in scales:
        try:
            result = profile_memory(neurons)
            results.append(result)
            print(f"  NeuroCHIMERA: {result['neurochimera_mb']:.2f} MB")
            print(f"  PyTorch: {result['pytorch_mb']:.2f} MB")
            print(f"  Reduction: {result['reduction_percent']:.1f}%")
        except Exception as e:
            print(f"  Error: {e}")

    # Save results
    with open('Benchmarks/memory_profiling_results.json', 'w') as f:
        json.dump(results, f, indent=2)

    print("\nβœ… Memory profiling complete")
    return results

if __name__ == "__main__":
    run_comprehensive_profiling()

Execute

python Benchmarks/memory_profiling_comprehensive.py

Deliverable: βœ… Complete memory profiling across all scales


TASK 7: Final Documentation Pass (P2) 🟑

Objective: Update all documentation with Phase 3 & 4 results

Documentation Checklist

Update the following files with results from Tasks 1-6:

  1. BENCHMARK_VALIDATION_REPORT.md

    • Update HNS accumulative status (FAILED β†’ PASSED)
    • Update GPU HNS status (Pending β†’ Validated)
    • Update PyTorch status (Not Run β†’ Validated)
    • Add all new benchmark results
  2. PROJECT_STATUS.md

    • Update Phase 3 status (60% β†’ 100%)
    • Update Phase 4 status (75% β†’ 100%)
    • Update component status matrix
    • Resolve all P0-P1 issues
  3. README (3).md

    • Update performance benchmarks table with real PyTorch data
    • Update memory efficiency with validated data
    • Update validation status markers
  4. BENCHMARK_DISCLAIMER.md

    • Change all πŸ“‹ Pending to βœ… Validated
    • Update validation timestamps
  5. PROJECT_ROADMAP.md

    • Mark Phase 3 as βœ… COMPLETE
    • Mark Phase 4 as βœ… COMPLETE
    • Update current phase to Phase 5

Automated Update Script

Create: update_documentation_phase3_4.sh

#!/bin/bash

echo "Updating documentation for Phase 3 & 4 completion..."

# Update phase completion markers
sed -i 's/Phase 3.*60% complete/Phase 3 (100% COMPLETE βœ…)/' PROJECT_ROADMAP.md
sed -i 's/Phase 4.*75% complete/Phase 4 (100% COMPLETE βœ…)/' PROJECT_ROADMAP.md

# Update status
sed -i 's/Current Phase: 4/Current Phase: 5/' PROJECT_STATUS.md

echo "βœ… Documentation updated"

Manual Steps:

  1. Review all benchmark JSON files
  2. Update tables in documentation with real data
  3. Change all pending markers to validated
  4. Add new sections for completed benchmarks

Deliverable: βœ… All documentation reflects Phase 3 & 4 completion


🎯 COMPLETION CRITERIA

Phase 3 Complete When:

  • All benchmarks executed with JSON data
  • Statistical significance added (mean Β± std dev)
  • PyTorch comparison real data
  • Memory profiling comprehensive
  • No πŸ“‹ Pending benchmarks remain

Phase 4 Complete When:

  • All P0-P1 bugs fixed
  • HNS accumulative test passing
  • Speedup discrepancy resolved
  • GPU utilization validated
  • Documentation 100% accurate

πŸ“Š PROGRESS TRACKING

Use this checklist while executing:

Phase 3 & 4 Completion Progress:
β”œβ”€ [πŸ”²] Task 1: HNS accumulative fix
β”œβ”€ [πŸ”²] Task 2: GPU HNS benchmarks
β”œβ”€ [πŸ”²] Task 3: PyTorch comparison
β”œβ”€ [πŸ”²] Task 4: Speedup verification
β”œβ”€ [πŸ”²] Task 5: Statistical significance
β”œβ”€ [πŸ”²] Task 6: Memory profiling
└─ [πŸ”²] Task 7: Documentation update

When all checked (βœ…), Phases 3 & 4 are COMPLETE!

πŸš€ QUICK START

Single Command Execution

# Run all tasks in sequence
./complete_phase_3_4.sh

Or Step-by-Step

# Task 1
python debug_hns_accumulative.py
python Benchmarks/hns_benchmark.py

# Task 2
python run_gpu_hns_validation.py

# Task 3
python Benchmarks/pytorch_comparison_real.py

# Task 4
python verify_speedup_discrepancy.py

# Task 5
# (Re-run all benchmarks with 10 runs each)

# Task 6
python Benchmarks/memory_profiling_comprehensive.py

# Task 7
# (Manual documentation update)

πŸ“ž Support

If you encounter issues during execution:

  1. HNS bug too complex: Consider alternative approaches (use float where HNS fails)
  2. GPU benchmarks fail: Ensure OpenGL 4.3+ and moderngl installed
  3. PyTorch issues: Check CUDA compatibility
  4. Memory profiling errors: Use estimates if nvidia-smi unavailable

Document Version: 1.0 Date: 2025-12-01 Estimated Completion: 8-12 hours Next Step After Completion: Begin Phase 5 (Scientific Validation)

Β‘Manos a la obra! Let's complete Phases 3 & 4! πŸš€

Β© 2025 All rights reservedBuilt with DataHub Cloud

Built with LogoDataHub Cloud