Phase 3 & 4 Completion Guide - Immediate Execution
Phase 3 & 4 Completion Guide - Immediate Execution
Date: 2025-12-01 Current Status: Phase 3 (60%), Phase 4 (75%) Target: Phase 3 (100%), Phase 4 (100%) Estimated Time: 8-12 hours of execution
π― Objective
Complete all remaining tasks for Phases 3 (Benchmarking) and 4 (Optimization) to reach 100% completion, enabling immediate progression to Phase 5 (Scientific Validation).
π Task Overview
Critical Path Tasks (Must Complete)
| # | Task | Priority | Time | Status |
|---|---|---|---|---|
| 1 | Fix HNS accumulative test | P0 | 2-4h | π΄ Critical |
| 2 | GPU HNS benchmarks + JSON | P1 | 1-2h | π‘ High |
| 3 | PyTorch comparison real | P1 | 2-3h | π‘ High |
| 4 | Verify speedup 65x vs 16x | P1 | 1-2h | π‘ High |
| 5 | Statistical significance | P2 | 2-3h | π‘ Medium |
| 6 | Memory profiling complete | P2 | 1-2h | π‘ Medium |
| 7 | Final documentation pass | P2 | 1-2h | π‘ Medium |
Total Estimated Time: 10-18 hours
TASK 1: Fix HNS Accumulative Test (P0 - CRITICAL) π΄
Current Issue: Test returns 0.0 instead of expected 1.0 (100% error)
File: hierarchical_number.py
Diagnosis Steps
-
Read the accumulative test code:
# Location in hns_benchmark.py python -c "import json; print(json.load(open('Benchmarks/hns_benchmark_results.json'))['accumulative'])" -
Add debug logging to HNS accumulation:
Create debug script:
debug_hns_accumulative.pyfrom hierarchical_number import HNumber, hns_add, hns_normalize # Test accumulation with detailed logging def debug_accumulative(iterations=100): """Test HNS accumulation with logging""" increment = 0.00001 # Start with larger increment # Initialize result = HNumber([0.0, 0.0, 0.0, 0.0]) increment_hns = HNumber.from_float(increment) print(f"Starting accumulation test:") print(f"Iterations: {iterations}") print(f"Increment: {increment}") print(f"Expected: {iterations * increment}") print(f"Initial HNS: {result.to_vec4()}") print(f"Increment HNS: {increment_hns.to_vec4()}") # Accumulate with periodic checks for i in range(iterations): result = hns_add(result, increment_hns) # Check every 10 iterations if i % 10 == 0 or i < 5: result_float = result.to_float() print(f"Iteration {i}: {result.to_vec4()} = {result_float}") # Check for zero if result_float == 0.0 and i > 0: print(f"ERROR: Result became 0.0 at iteration {i}!") print(f"Last HNS: {result.to_vec4()}") break final = result.to_float() expected = iterations * increment error = abs(final - expected) print(f"\nFinal Results:") print(f"HNS vec4: {result.to_vec4()}") print(f"HNS float: {final}") print(f"Expected: {expected}") print(f"Error: {error}") print(f"Relative error: {error/expected*100:.2f}%") return final, expected, error if __name__ == "__main__": # Test with increasing iterations for n in [10, 100, 1000, 10000]: print("\n" + "="*60) debug_accumulative(n) -
Run debug script:
python debug_hns_accumulative.py
Expected Issues & Fixes
Issue 1: Precision loss in from_float()
- Symptom: Very small numbers (0.000001) become 0 in HNS
- Fix: Adjust BASE or use scaling factor
Issue 2: Normalization removing small values
- Symptom: Values < 1.0 get zeroed during normalization
- Fix: Handle fractional parts correctly
Issue 3: Accumulation overflow/underflow
- Symptom: Result resets to 0 after many iterations
- Fix: Check carry propagation logic
Quick Fix Template
If issue is in hierarchical_number.py, add fractional support:
def hns_add(vec_a: List[float], vec_b: List[float]) -> List[float]:
"""HNS hierarchical addition with fractional support."""
# Add components
raw_sum = [x + y for x, y in zip(vec_a, vec_b)]
# Normalize with proper fractional handling
return hns_normalize(raw_sum, keep_fractional=True)
def hns_normalize(vec4: List[float], keep_fractional: bool = False) -> List[float]:
"""Normalize HNS with optional fractional preservation."""
r, g, b, a = vec4
# Handle fractional part
if keep_fractional and r < 1.0 and g == 0 and b == 0 and a == 0:
# Keep small fractional values
return [r, g, b, a]
# Standard carry propagation
carry0 = math.floor(r * INV_BASE)
r = r - (carry0 * BASE)
g += carry0
carry1 = math.floor(g * INV_BASE)
g = g - (carry1 * BASE)
b += carry1
carry2 = math.floor(b * INV_BASE)
b = b - (carry2 * BASE)
a += carry2
return [r, g, b, a]
Validation
After fix, run full test:
python Benchmarks/hns_benchmark.py
Expected output:
"accumulative": {
"iterations": 1000000,
"expected": 1.0,
"hns": {
"result": 1.0000000, // Should be ~1.0
"error": < 0.00001, // Should be very small
"time": ...
}
}
Deliverable: β HNS accumulative test passing with error < 0.01%
TASK 2: GPU HNS Benchmarks with JSON (P1) π‘
Objective: Execute GPU HNS benchmarks and save JSON validation data
Execution Script
Create: run_gpu_hns_validation.py
"""
GPU HNS Benchmark Validation
Runs GPU HNS benchmarks 10+ times for statistical significance
Saves JSON results for validation
"""
import json
import time
import numpy as np
from pathlib import Path
from datetime import datetime
# Import benchmark script
import sys
sys.path.insert(0, 'Benchmarks')
from hns_gpu_benchmark import GPUHNSBenchmark
def run_validation(runs=10):
"""Run GPU HNS benchmarks multiple times"""
print("="*70)
print("GPU HNS BENCHMARK VALIDATION")
print("="*70)
print(f"Runs: {runs}")
print(f"Date: {datetime.now().isoformat()}")
print("="*70)
benchmark = GPUHNSBenchmark()
results = {
'metadata': {
'date': datetime.now().isoformat(),
'runs': runs,
'gpu': benchmark.get_gpu_info(),
},
'addition_speed': [],
'scaling_speed': [],
'precision_tests': []
}
# Run benchmarks multiple times
for run in range(runs):
print(f"\n--- Run {run+1}/{runs} ---")
# Addition speed test
print("Testing addition speed...")
add_result = benchmark.test_addition_speed()
results['addition_speed'].append(add_result)
# Scaling speed test
print("Testing scaling speed...")
scale_result = benchmark.test_scaling_speed()
results['scaling_speed'].append(scale_result)
# Precision test (only once)
if run == 0:
print("Testing precision...")
prec_result = benchmark.test_precision()
results['precision_tests'] = prec_result
# Calculate statistics
add_times = [r['hns_time'] for r in results['addition_speed']]
scale_times = [r['hns_time'] for r in results['scaling_speed']]
results['statistics'] = {
'addition': {
'mean_time': np.mean(add_times),
'std_time': np.std(add_times),
'speedup_mean': np.mean([r['speedup'] for r in results['addition_speed']]),
'speedup_std': np.std([r['speedup'] for r in results['addition_speed']]),
'consistency': f"{np.std(add_times)/np.mean(add_times)*100:.1f}%"
},
'scaling': {
'mean_time': np.mean(scale_times),
'std_time': np.std(scale_times),
'speedup_mean': np.mean([r['speedup'] for r in results['scaling_speed']]),
'speedup_std': np.std([r['speedup'] for r in results['scaling_speed']]),
'consistency': f"{np.std(scale_times)/np.mean(scale_times)*100:.1f}%"
}
}
# Save results
output_file = Path('Benchmarks/hns_gpu_benchmark_results.json')
with open(output_file, 'w') as f:
json.dump(results, f, indent=2)
print("\n" + "="*70)
print("RESULTS SUMMARY")
print("="*70)
print(f"Addition Speed:")
print(f" Mean speedup: {results['statistics']['addition']['speedup_mean']:.2f}x")
print(f" Std dev: {results['statistics']['addition']['speedup_std']:.3f}")
print(f" Consistency: {results['statistics']['addition']['consistency']}")
print(f"\nScaling Speed:")
print(f" Mean speedup: {results['statistics']['scaling']['speedup_mean']:.2f}x")
print(f" Std dev: {results['statistics']['scaling']['speedup_std']:.3f}")
print(f" Consistency: {results['statistics']['scaling']['consistency']}")
print(f"\nβ
Results saved to: {output_file}")
return results
if __name__ == "__main__":
results = run_validation(runs=10)
Execute
python run_gpu_hns_validation.py
Expected Output:
- JSON file:
Benchmarks/hns_gpu_benchmark_results.json - Validation of 1.21x speedup claim (or correction)
- Statistical significance < 5% std dev
Deliverable: β GPU HNS benchmarks validated with JSON
TASK 3: PyTorch Comparative Benchmarks (P1) π‘
Objective: Execute REAL PyTorch comparison (not theoretical)
Setup PyTorch
# Install PyTorch with CUDA support
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
Create Benchmark Script
Create: Benchmarks/pytorch_comparison_real.py
"""
Real PyTorch vs NeuroCHIMERA Comparison
Executes actual benchmarks on both frameworks
"""
import json
import time
import torch
import numpy as np
from datetime import datetime
import sys
sys.path.insert(0, '.')
from engine import NeuroCHIMERA, NeuroCHIMERAConfig
class PyTorchComparison:
def __init__(self):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"PyTorch device: {self.device}")
def benchmark_matrix_mult(self, size=2048, runs=10):
"""Compare matrix multiplication"""
print(f"\nMatrix Multiplication ({size}Γ{size})...")
# PyTorch
torch.cuda.synchronize()
a = torch.randn(size, size, device=self.device)
b = torch.randn(size, size, device=self.device)
# Warmup
for _ in range(3):
_ = torch.matmul(a, b)
torch.cuda.synchronize()
# Benchmark
pytorch_times = []
for _ in range(runs):
torch.cuda.synchronize()
start = time.perf_counter()
result = torch.matmul(a, b)
torch.cuda.synchronize()
pytorch_times.append(time.perf_counter() - start)
pytorch_mean = np.mean(pytorch_times) * 1000 # ms
# NeuroCHIMERA (equivalent operation)
neurons = size * size
config = NeuroCHIMERAConfig(neurons=neurons, use_hns=True)
brain = NeuroCHIMERA(config=config)
# Warmup
for _ in range(3):
brain.evolve(iterations=1)
# Benchmark
chimera_times = []
for _ in range(runs):
start = time.perf_counter()
brain.evolve(iterations=1)
chimera_times.append(time.perf_counter() - start)
chimera_mean = np.mean(chimera_times) * 1000 # ms
brain.release()
speedup = pytorch_mean / chimera_mean
return {
'operation': 'matrix_multiplication',
'size': size,
'pytorch_ms': pytorch_mean,
'pytorch_std': np.std(pytorch_times) * 1000,
'neurochimera_ms': chimera_mean,
'neurochimera_std': np.std(chimera_times) * 1000,
'speedup': speedup,
'runs': runs
}
def benchmark_evolution(self, neurons=1000000, iterations=20, runs=10):
"""Compare evolution step"""
print(f"\nEvolution Step ({neurons} neurons, {iterations} iterations)...")
# PyTorch equivalent
torch.cuda.synchronize()
state = torch.randn(neurons, device=self.device)
weights = torch.randn(neurons, neurons, device=self.device, sparse=True)
# Warmup
for _ in range(3):
_ = torch.sigmoid(torch.sparse.mm(weights, state.unsqueeze(1)))
torch.cuda.synchronize()
# Benchmark
pytorch_times = []
for _ in range(runs):
torch.cuda.synchronize()
start = time.perf_counter()
for _ in range(iterations):
state = torch.sigmoid(torch.sparse.mm(weights, state.unsqueeze(1)).squeeze())
torch.cuda.synchronize()
pytorch_times.append(time.perf_counter() - start)
pytorch_mean = np.mean(pytorch_times) * 1000
# NeuroCHIMERA
config = NeuroCHIMERAConfig(neurons=neurons, use_hns=True)
brain = NeuroCHIMERA(config=config)
# Warmup
for _ in range(3):
brain.evolve(iterations=iterations)
# Benchmark
chimera_times = []
for _ in range(runs):
start = time.perf_counter()
brain.evolve(iterations=iterations)
chimera_times.append(time.perf_counter() - start)
chimera_mean = np.mean(chimera_times) * 1000
brain.release()
speedup = pytorch_mean / chimera_mean
return {
'operation': 'evolution_step',
'neurons': neurons,
'iterations': iterations,
'pytorch_ms': pytorch_mean,
'pytorch_std': np.std(pytorch_times) * 1000,
'neurochimera_ms': chimera_mean,
'neurochimera_std': np.std(chimera_times) * 1000,
'speedup': speedup,
'runs': runs
}
def run_all_benchmarks(self):
"""Run all comparative benchmarks"""
results = {
'metadata': {
'date': datetime.now().isoformat(),
'pytorch_version': torch.__version__,
'cuda_available': torch.cuda.is_available(),
'gpu': torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'CPU'
},
'benchmarks': []
}
# Matrix multiplication
results['benchmarks'].append(
self.benchmark_matrix_mult(size=2048, runs=10)
)
# Evolution step
results['benchmarks'].append(
self.benchmark_evolution(neurons=1000000, iterations=20, runs=10)
)
# Save results
with open('Benchmarks/pytorch_comparison_results.json', 'w') as f:
json.dump(results, f, indent=2)
# Print summary
print("\n" + "="*70)
print("PYTORCH COMPARISON RESULTS")
print("="*70)
for bench in results['benchmarks']:
print(f"\n{bench['operation'].replace('_', ' ').title()}:")
print(f" PyTorch: {bench['pytorch_ms']:.2f}ms Β± {bench['pytorch_std']:.2f}ms")
print(f" NeuroCHIMERA: {bench['neurochimera_ms']:.2f}ms Β± {bench['neurochimera_std']:.2f}ms")
if bench['speedup'] > 1:
print(f" β
NeuroCHIMERA is {bench['speedup']:.2f}x FASTER")
else:
print(f" β οΈ PyTorch is {1/bench['speedup']:.2f}x faster")
return results
if __name__ == "__main__":
comp = PyTorchComparison()
comp.run_all_benchmarks()
Execute
python Benchmarks/pytorch_comparison_real.py
Deliverable: β Real PyTorch comparison with honest results
TASK 4: Verify Speedup Discrepancy (P1) π‘
Objective: Resolve 65x vs 16x discrepancy
Investigation Script
Create: verify_speedup_discrepancy.py
"""
Investigate the 65x vs 16x speedup discrepancy
Run comprehensive benchmarks to find source of 1,770M neurons/s claim
"""
import json
import time
import numpy as np
from engine import NeuroCHIMERA, NeuroCHIMERAConfig
from engine_optimized import OptimizedNeuroCHIMERA
def comprehensive_speedup_test():
"""Test multiple configurations to find 65x speedup source"""
results = {
'standard_tests': [],
'optimized_tests': [],
'stress_tests': []
}
# Test configurations
configs = [
{'neurons': 65536, 'name': '65K'},
{'neurons': 262144, 'name': '262K'},
{'neurons': 1048576, 'name': '1M'},
{'neurons': 4194304, 'name': '4M'},
]
for config_params in configs:
neurons = config_params['neurons']
name = config_params['name']
print(f"\nTesting {name} neurons ({neurons})...")
# Standard engine
config = NeuroCHIMERAConfig(neurons=neurons, use_hns=True)
brain_std = NeuroCHIMERA(config=config)
# Warmup
for _ in range(3):
brain_std.evolve(iterations=5)
# Benchmark standard
times_std = []
for _ in range(10):
start = time.perf_counter()
brain_std.evolve(iterations=1)
times_std.append(time.perf_counter() - start)
std_time = np.mean(times_std)
std_throughput = neurons / std_time
brain_std.release()
# Optimized engine
brain_opt = OptimizedNeuroCHIMERA(config=config)
# Warmup
for _ in range(3):
brain_opt.evolve_optimized(iterations=5)
# Benchmark optimized
times_opt = []
for _ in range(10):
brain_opt.ctx.finish() # Ensure clean state
start = time.perf_counter()
brain_opt.evolve_optimized(iterations=1)
brain_opt.ctx.finish()
times_opt.append(time.perf_counter() - start)
opt_time = np.mean(times_opt)
opt_throughput = neurons / opt_time
brain_opt.release()
# Calculate speedup
speedup = std_time / opt_time
result = {
'neurons': neurons,
'name': name,
'standard_time_ms': std_time * 1000,
'standard_throughput': std_throughput / 1e6, # M neurons/s
'optimized_time_ms': opt_time * 1000,
'optimized_throughput': opt_throughput / 1e6,
'speedup': speedup
}
results['standard_tests'].append(result)
print(f" Standard: {std_throughput/1e6:.2f}M neurons/s")
print(f" Optimized: {opt_throughput/1e6:.2f}M neurons/s")
print(f" Speedup: {speedup:.2f}x")
# Check if this matches the 1,770M claim
if abs(opt_throughput/1e6 - 1770) < 100:
print(f" β FOUND: This configuration produces ~1,770M neurons/s!")
# Save results
with open('speedup_verification_results.json', 'w') as f:
json.dump(results, f, indent=2)
print("\n" + "="*70)
print("SPEEDUP VERIFICATION COMPLETE")
print("="*70)
print("Results saved to: speedup_verification_results.json")
return results
if __name__ == "__main__":
comprehensive_speedup_test()
Execute
python verify_speedup_discrepancy.py
Expected Outcome:
- Identify which configuration produces 1,770M neurons/s
- Validate 16x speedup for 1M neurons
- Update documentation with clarification
Deliverable: β Speedup discrepancy resolved and documented
TASK 5: Statistical Significance (P2) π‘
Objective: Add mean Β± std dev to all benchmarks
Bulk Update Script
Create: add_statistical_significance.py
"""
Add statistical significance to all existing benchmarks
Re-run benchmarks 10 times and calculate std dev
"""
import json
import numpy as np
from pathlib import Path
# List of benchmark scripts
BENCHMARK_SCRIPTS = [
'Benchmarks/benchmark_neurochimera_system.py',
'Benchmarks/benchmark_gpu_complete_system.py',
'Benchmarks/benchmark_optimized_gpu.py',
]
def add_stats_to_benchmark(script_path, runs=10):
"""Re-run benchmark with multiple runs for statistics"""
print(f"\nProcessing: {script_path}")
# Import and run benchmark
# (Implement based on each benchmark's structure)
pass
# This is a template - actual implementation depends on
# specific benchmark scripts structure
Manual Approach:
For each benchmark in Benchmarks/, modify to include:
# Run benchmark 10 times
results = []
for run in range(10):
result = benchmark_function()
results.append(result)
# Calculate statistics
mean = np.mean(results)
std = np.std(results)
consistency = "Excellent" if std/mean < 0.05 else "Good" if std/mean < 0.10 else "Poor"
output = {
'mean': mean,
'std': std,
'consistency': consistency,
'all_runs': results
}
Deliverable: β All benchmarks report mean Β± std dev
TASK 6: Memory Profiling (P2) π‘
Objective: Complete memory efficiency study across all scales
Memory Profiling Script
Create: Benchmarks/memory_profiling_comprehensive.py
"""
Comprehensive Memory Profiling
Tests memory usage across multiple scales
"""
import json
import torch
import numpy as np
from engine import NeuroCHIMERA, NeuroCHIMERAConfig
def profile_memory(neurons):
"""Profile memory for given network size"""
print(f"\nProfiling {neurons:,} neurons...")
# NeuroCHIMERA memory
config = NeuroCHIMERAConfig(neurons=neurons, use_hns=True)
brain = NeuroCHIMERA(config=config)
# Get GPU memory (requires nvidia-smi or torch.cuda)
if torch.cuda.is_available():
torch.cuda.synchronize()
neurochimera_memory = torch.cuda.memory_allocated() / 1024**2 # MB
else:
# Estimate from texture sizes
texture_size = int(np.sqrt(neurons))
neurochimera_memory = (texture_size ** 2 * 4 * 4) / 1024**2 # RGBA float32
brain.release()
# PyTorch equivalent memory
pytorch_neurons = torch.randn(neurons, device='cuda' if torch.cuda.is_available() else 'cpu')
pytorch_weights = torch.randn(neurons, neurons, device='cuda' if torch.cuda.is_available() else 'cpu')
if torch.cuda.is_available():
torch.cuda.synchronize()
pytorch_memory = torch.cuda.memory_allocated() / 1024**2
else:
pytorch_memory = (neurons * 4 + neurons * neurons * 4) / 1024**2
del pytorch_neurons, pytorch_weights
# Calculate efficiency
reduction = (pytorch_memory - neurochimera_memory) / pytorch_memory * 100
return {
'neurons': neurons,
'neurochimera_mb': neurochimera_memory,
'pytorch_mb': pytorch_memory,
'reduction_percent': reduction,
'bytes_per_neuron': neurochimera_memory * 1024**2 / neurons
}
def run_comprehensive_profiling():
"""Profile multiple scales"""
scales = [
65536, # 65K
262144, # 262K
1048576, # 1M
4194304, # 4M
16777216, # 16M
67108864, # 67M
]
results = []
for neurons in scales:
try:
result = profile_memory(neurons)
results.append(result)
print(f" NeuroCHIMERA: {result['neurochimera_mb']:.2f} MB")
print(f" PyTorch: {result['pytorch_mb']:.2f} MB")
print(f" Reduction: {result['reduction_percent']:.1f}%")
except Exception as e:
print(f" Error: {e}")
# Save results
with open('Benchmarks/memory_profiling_results.json', 'w') as f:
json.dump(results, f, indent=2)
print("\nβ
Memory profiling complete")
return results
if __name__ == "__main__":
run_comprehensive_profiling()
Execute
python Benchmarks/memory_profiling_comprehensive.py
Deliverable: β Complete memory profiling across all scales
TASK 7: Final Documentation Pass (P2) π‘
Objective: Update all documentation with Phase 3 & 4 results
Documentation Checklist
Update the following files with results from Tasks 1-6:
-
BENCHMARK_VALIDATION_REPORT.md
- Update HNS accumulative status (FAILED β PASSED)
- Update GPU HNS status (Pending β Validated)
- Update PyTorch status (Not Run β Validated)
- Add all new benchmark results
-
PROJECT_STATUS.md
- Update Phase 3 status (60% β 100%)
- Update Phase 4 status (75% β 100%)
- Update component status matrix
- Resolve all P0-P1 issues
-
README (3).md
- Update performance benchmarks table with real PyTorch data
- Update memory efficiency with validated data
- Update validation status markers
-
BENCHMARK_DISCLAIMER.md
- Change all π Pending to β Validated
- Update validation timestamps
-
PROJECT_ROADMAP.md
- Mark Phase 3 as β COMPLETE
- Mark Phase 4 as β COMPLETE
- Update current phase to Phase 5
Automated Update Script
Create: update_documentation_phase3_4.sh
#!/bin/bash
echo "Updating documentation for Phase 3 & 4 completion..."
# Update phase completion markers
sed -i 's/Phase 3.*60% complete/Phase 3 (100% COMPLETE β
)/' PROJECT_ROADMAP.md
sed -i 's/Phase 4.*75% complete/Phase 4 (100% COMPLETE β
)/' PROJECT_ROADMAP.md
# Update status
sed -i 's/Current Phase: 4/Current Phase: 5/' PROJECT_STATUS.md
echo "β
Documentation updated"
Manual Steps:
- Review all benchmark JSON files
- Update tables in documentation with real data
- Change all pending markers to validated
- Add new sections for completed benchmarks
Deliverable: β All documentation reflects Phase 3 & 4 completion
π― COMPLETION CRITERIA
Phase 3 Complete When:
- All benchmarks executed with JSON data
- Statistical significance added (mean Β± std dev)
- PyTorch comparison real data
- Memory profiling comprehensive
- No π Pending benchmarks remain
Phase 4 Complete When:
- All P0-P1 bugs fixed
- HNS accumulative test passing
- Speedup discrepancy resolved
- GPU utilization validated
- Documentation 100% accurate
π PROGRESS TRACKING
Use this checklist while executing:
Phase 3 & 4 Completion Progress:
ββ [π²] Task 1: HNS accumulative fix
ββ [π²] Task 2: GPU HNS benchmarks
ββ [π²] Task 3: PyTorch comparison
ββ [π²] Task 4: Speedup verification
ββ [π²] Task 5: Statistical significance
ββ [π²] Task 6: Memory profiling
ββ [π²] Task 7: Documentation update
When all checked (β
), Phases 3 & 4 are COMPLETE!
π QUICK START
Single Command Execution
# Run all tasks in sequence
./complete_phase_3_4.sh
Or Step-by-Step
# Task 1
python debug_hns_accumulative.py
python Benchmarks/hns_benchmark.py
# Task 2
python run_gpu_hns_validation.py
# Task 3
python Benchmarks/pytorch_comparison_real.py
# Task 4
python verify_speedup_discrepancy.py
# Task 5
# (Re-run all benchmarks with 10 runs each)
# Task 6
python Benchmarks/memory_profiling_comprehensive.py
# Task 7
# (Manual documentation update)
π Support
If you encounter issues during execution:
- HNS bug too complex: Consider alternative approaches (use float where HNS fails)
- GPU benchmarks fail: Ensure OpenGL 4.3+ and moderngl installed
- PyTorch issues: Check CUDA compatibility
- Memory profiling errors: Use estimates if nvidia-smi unavailable
Document Version: 1.0 Date: 2025-12-01 Estimated Completion: 8-12 hours Next Step After Completion: Begin Phase 5 (Scientific Validation)
Β‘Manos a la obra! Let's complete Phases 3 & 4! π