Logo

NeuroCHIMERA Reproducibility Guide

NeuroCHIMERA Reproducibility Guide

Version: 1.0 Date: 2025-12-02 Purpose: Enable independent validation of all NeuroCHIMERA benchmarks and results


Overview

This guide provides complete instructions for reproducing all NeuroCHIMERA benchmark results on your own hardware. All benchmarks use fixed random seeds and complete system configuration export for deterministic results.


The easiest way to reproduce results is using our Docker container:

# 1. Clone the repository
git clone https://github.com/yourusername/NeuroCHIMERA.git
cd NeuroCHIMERA

# 2. Build the Docker image
docker build -t neurochimera:latest .

# 3. Run all benchmarks
docker run --gpus all -v $(pwd)/results:/app/results neurochimera:latest

# 4. View results
ls results/

Individual Benchmarks

# GPU HNS benchmarks
docker run --gpus all neurochimera python3 Benchmarks/gpu_hns_complete_benchmark.py

# PyTorch/TensorFlow comparison
docker run --gpus all neurochimera python3 Benchmarks/comparative_benchmark_suite.py

# Consciousness emergence validation
docker run neurochimera python3 Benchmarks/consciousness_emergence_test.py

# Generate visualizations
docker run -v $(pwd)/benchmark_graphs:/app/Benchmarks/benchmark_graphs \
    neurochimera python3 Benchmarks/visualize_benchmarks.py

Using Docker Compose

# Run all benchmarks
docker-compose up neurochimera

# Run specific benchmarks
docker-compose up gpu-hns
docker-compose up comparative
docker-compose up consciousness
docker-compose up visualize

Manual Installation

If you prefer to run without Docker:

1. System Requirements

Minimum:

  • Python 3.8+
  • NVIDIA GPU with CUDA 11.0+ (for GPU benchmarks)
  • OpenGL 4.3+ support
  • 8GB RAM
  • 4GB GPU VRAM

Recommended:

  • Python 3.10
  • NVIDIA RTX 3090 or equivalent
  • CUDA 12.0+
  • 16GB RAM
  • 24GB GPU VRAM

2. Install Dependencies

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

3. Verify Installation

# Check ModernGL (GPU support)
python -c "import moderngl; ctx = moderngl.create_standalone_context(); print(f'GPU: {ctx.info[\"GL_RENDERER\"]}')"

# Check PyTorch GPU
python -c "import torch; print(f'PyTorch GPU: {torch.cuda.is_available()}')"

# Check TensorFlow GPU
python -c "import tensorflow as tf; print(f'TensorFlow GPUs: {len(tf.config.list_physical_devices(\"GPU\"))}')"

Running Benchmarks

GPU HNS Benchmarks

cd Benchmarks
python gpu_hns_complete_benchmark.py

Expected output:

  • File: gpu_hns_complete_benchmark_results.json
  • Duration: ~5-10 minutes
  • Tests: 4 sizes × 2 operations × 20 runs
  • Validation: All tests should PASS

Key Results to Verify:

  • 10M operations Addition: ~15.9 billion ops/s
  • 10M operations Scaling: ~19.8 billion ops/s
  • All validation checks: PASSED

PyTorch/TensorFlow Comparative Benchmarks

python comparative_benchmark_suite.py

Expected output:

  • File: comparative_benchmark_results.json
  • Duration: ~10-15 minutes
  • Tests: 3 matrix sizes × multiple frameworks × 20 runs

Key Results to Verify (RTX 3090):

  • PyTorch GPU @ 2048×2048: ~17.5 TFLOPS
  • TensorFlow GPU @ 2048×2048: ~15.9 TFLOPS
  • Speedup vs NumPy: ~40x

Note: Results will vary by GPU. Compare your results to published benchmarks for your specific GPU model.

Consciousness Emergence Validation

python consciousness_emergence_test.py

Expected output:

  • File: consciousness_emergence_results.json
  • Duration: ~30-60 seconds
  • Epochs: 10,000
  • Emergence detection: YES (around epoch 6,000)

Key Results to Verify:

  • Connectivity (k): ≥15
  • Integration (Φ): ≥0.65
  • Depth (D): ≥7
  • Complexity (C): ≥0.8
  • Qualia (QCM): ≥0.75
  • Validation: PASSED

Generate Visualizations

python visualize_benchmarks.py

Expected output:

  • Directory: benchmark_graphs/
  • Files: 3 PNG images @ 300 DPI
  • gpu_hns_performance.png
  • framework_comparison.png
  • hns_cpu_benchmarks.png

Validating Results

1. Check JSON Files

All benchmarks export complete results to JSON files with:

  • Full system configuration
  • Raw timing data for all runs
  • Statistical metrics (mean, std dev, min, max)
  • Validation status
# View GPU HNS results
cat gpu_hns_complete_benchmark_results.json | jq '.'

# Check if all tests passed
cat gpu_hns_complete_benchmark_results.json | jq '.results.addition[].validation_passed'

2. Compare with Published Results

Published results are available in the repository:

  • Benchmarks/gpu_hns_complete_benchmark_results.json (reference)
  • Benchmarks/comparative_benchmark_results.json (reference)
# Compare your results with published results
diff <(jq -S '.' your_results.json) <(jq -S '.' published_results.json)

Note: Exact numerical values will vary due to:

  • GPU model differences
  • CUDA/driver version differences
  • System load variations

What should match:

  • Test configuration (sizes, runs, seeds)
  • Validation status (all PASS)
  • Order of magnitude for performance metrics

3. Statistical Validation

All benchmarks use 20 runs for statistical significance:

# Check standard deviation is reasonable (< 10% of mean)
python -c "
import json
with open('gpu_hns_complete_benchmark_results.json') as f:
    data = json.load(f)
    for res in data['results']['addition']:
        cv = (res['std_time_ms'] / res['mean_time_ms']) * 100
        print(f'Size {res[\"size\"]}: CV = {cv:.2f}%')
"

Expected: Coefficient of variation (CV) < 10% for stable measurements


Troubleshooting

GPU Not Detected

# Check NVIDIA driver
nvidia-smi

# Check CUDA
nvcc --version

# Check ModernGL context
python -c "import moderngl; ctx = moderngl.create_standalone_context(); print(ctx.info)"

Solution: Update NVIDIA drivers to latest version

PyTorch GPU Not Available

# Check CUDA availability
python -c "import torch; print(torch.cuda.is_available()); print(torch.version.cuda)"

Solution: Reinstall PyTorch with correct CUDA version:

pip install torch==2.1.0+cu121 -f https://download.pytorch.org/whl/torch_stable.html

TensorFlow GPU Not Available

# Check GPU detection
python -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"

Solution: Install CUDA-enabled TensorFlow:

pip install tensorflow[and-cuda]==2.15.0

Out of Memory Errors

GPU OOM:

  • Reduce test sizes in benchmark scripts
  • Close other GPU applications
  • For RTX 3090: All benchmarks should fit in 24GB VRAM

CPU OOM:

  • Reduce matrix sizes in comparative benchmarks
  • For 16GB RAM: Benchmarks should complete successfully

Performance Much Lower Than Expected

Check:

  1. GPU utilization: nvidia-smi dmon
  2. Power limit: nvidia-smi -q -d POWER
  3. Thermal throttling: nvidia-smi -q -d TEMPERATURE
  4. Background processes: nvidia-smi

Optimize:

# Set maximum power limit (adjust as needed)
sudo nvidia-smi -pl 350

# Set persistence mode
sudo nvidia-smi -pm 1

Hardware-Specific Notes

NVIDIA RTX 3090

Expected Performance:

  • GPU HNS Scaling: 19-20 billion ops/s
  • PyTorch GEMM 2048×2048: 17-18 TFLOPS
  • Comparative speedup vs NumPy: 40-45x

NVIDIA RTX 4090

Expected Performance:

  • GPU HNS Scaling: 30-35 billion ops/s
  • PyTorch GEMM 2048×2048: 25-30 TFLOPS
  • Comparative speedup vs NumPy: 60-70x

AMD GPUs (ROCm)

Status: Not yet tested Alternative: Use CPU-only benchmarks (skip GPU tests)

# Run CPU-only benchmarks
python hns_benchmark.py
python comparative_benchmark_suite.py  # Will use CPU backend

Reproducing Published Results

Step-by-Step Validation

  1. Clone and Setup
git clone https://github.com/yourusername/NeuroCHIMERA.git
cd NeuroCHIMERA
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
  1. Run GPU HNS Benchmarks
cd Benchmarks
python gpu_hns_complete_benchmark.py > gpu_hns_log.txt
  1. Run Comparative Benchmarks
python comparative_benchmark_suite.py > comparative_log.txt
  1. Run Consciousness Validation
python consciousness_emergence_test.py > consciousness_log.txt
  1. Generate Visualizations
python visualize_benchmarks.py
  1. Compare Results
# Check all tests passed
grep "PASSED" gpu_hns_log.txt
grep "PASSED" comparative_log.txt
grep "PASSED" consciousness_log.txt

# Compare JSON results
python compare_results.py \
    gpu_hns_complete_benchmark_results.json \
    published/gpu_hns_complete_benchmark_results.json

Citation

If you reproduce these results in your research, please cite:

@article{neurochimera2025,
  title={NeuroCHIMERA: GPU-Native Neuromorphic Computing with Hierarchical Number Systems},
  author={[Author Names]},
  journal={[Journal]},
  year={2025},
  note={Reproducibility package available at https://github.com/yourusername/NeuroCHIMERA}
}

Support

Issues: https://github.com/yourusername/NeuroCHIMERA/issues Email: [contact email] Documentation: https://neurochimera.readthedocs.io


Version History

v1.0 (2025-12-02):

  • Initial reproducibility package
  • Docker support
  • Complete benchmark suite
  • Validation scripts

License

[License information]


Last Updated: 2025-12-02 Maintainer: NeuroCHIMERA Project Team

© 2025 All rights reservedBuilt with DataHub Cloud

Built with LogoDataHub Cloud