Logo
0

找预分单运力——>判断预分单or升舱

当前轮询逻辑:不放回(不累加)可能有问题

供需判断——>找预分单运力——>判断预分单or升舱or不预分单(举手后)

  1. 供需判断:当前格子内供需情况较差,触发预分单/升舱
  2. 判断对应商家升舱/预分单 卡点
  3. 判断之后,让对应商家其寻找司机运力 a. 升舱:找到运力后直接完单 ❗没找到运力怎么办 b. 不升舱:让其经过预分单接受度模型,接受度高于阈值的话进行预分单,否则什么都不做

总目标:增加完单

预算:0.1pp cost

完单:0.4pp

参数与变量定义

Pi(Ac)P_{i}(A|c)

PiupP_{i}^{up}

PibaseP_{i}^{base}

priceiupprice_{i}^{up}

priceibaseprice_{i}^{base}

GMViupGMV_{i}^{up}

GMVibaseGMV_{i}^{base}

ziz_{i}

θ\theta

目标函数

maxf(Z)=i=1Nzi(Piup[Pi(Ac)Piup+(1Pi(Ac))Pibase)])\begin{gather} maxf(\mathbf{Z})=\sum_{i=1}^{N}{{z_{i} (P_{i}^{up}-[P_{i}(A|c) P_{i}^{up}+(1-P_{i}(A|c)) P_{i}^{base})])}} \end{gather}

约束条件

s.ti=1Nzi(priceiuppriceibase)PiupBB=(i=1Nzi[(1Pi(Ac))(GMViupGMVibase)]+(1Pi(Ac))GMVibase+Pi(Ac)GMViup)θ\begin{gather} s.t \quad \quad \sum_{i=1}^{N}{z_{i}(price_{i}^{up}-price_{i}^{base})P_{i}^{up}} \leq B \\ B=(\sum_{i=1}^{N}{z_{i}[(1-P_{i}(A|c))(GMV_{i}^{up}-GMV_{i}^{base})]+ (1-P_{i}(A|c))GMV_{i}^{base}+P_{i}(A|c)GMV_{i}^{up})} \cdot \theta \end{gather}

优化决策

minL(Z,λ)=i=1Nzi(Piup[Pi(Ac)Piup+(1Pi(Ac))Pibase])+λ(i=1Nzi(priceiuppriceibase)PiupB)\begin{gather} minL(\mathbf{Z},\lambda)=-\sum_{i=1}^{N}{{z_{i} (P_{i}^{up}-[P_{i}(A|c) P_{i}^{up}+(1-P_{i}(A|c)) P_{i}^{base}])}}\\+\lambda \cdot(\sum_{i=1}^{N}{z_{i}(price_{i}^{up}-price_{i}^{base})P_{i}^{up}}-B) \end{gather} minZmaxλL(Z,λ)\begin{gather} \min_{\mathbf{Z}}{\max_{\lambda}}L(\mathbf{Z},\lambda) \end{gather} maxλminZL(Z,λ)=λB+i=1Nzi[λ(priceiuppriceibase)Piup(1Pi(Ac)(PiupPibase)]连续背包问题中的valueweight=λ(i=1Nzi[(1Pi(Ac))(GMViupGMVibase)]+(1Pi(Ac))GMVibase+Pi(Ac)GMViup)θ+i=1Nzi[λ(priceiuppriceibase)Piup(1Pi(Ac)(PiupPibase)]连续背包问题中的valueweightmaxλminZL(Z,λ)=i=1Nzi[[1Pi(Ac)][λθ(GMViupGMVibase)(PiupPibase)]+λ(priceiuppriceibase)Piup)]连续背包问题中的valueweighti=1Nλθ[(1Pi(Ac))GMVibase+Pi(Ac)GMViup]\begin{gather} \max_{\lambda}{\min_{\mathbf{Z}}}L(\mathbf{Z},\lambda)=-\lambda B+\sum_{i=1}^{N}{z_{i} \underbrace{[\lambda (price_{i}^{up}-price_{i}^{base})P_{i}^{up}-(1-P_{i}(A|c)(P_{i}^{up}-P_{i}^{base})]}_{连续背包问题中的\frac{value}{weight}}} \\ =-\lambda (\sum_{i=1}^{N}{z_{i}[(1-P_{i}(A|c))(GMV_{i}^{up}-GMV_{i}^{base})]+ (1-P_{i}(A|c))GMV_{i}^{base}+P_{i}(A|c)GMV_{i}^{up})} \cdot \theta \\ +\sum_{i=1}^{N}{z_{i} \underbrace{[\lambda (price_{i}^{up}-price_{i}^{base})P_{i}^{up}-(1-P_{i}(A|c)(P_{i}^{up}-P_{i}^{base})]}_{连续背包问题中的\frac{value}{weight}}} \\ \max_{\lambda}{\min_{\mathbf{Z}}}L(\mathbf{Z},\lambda)=\sum_{i=1}^{N}{z_{i} \underbrace{[[1-P_{i}(A|c)][-\lambda \theta (GMV_{i}^{up}-GMV_{i}^{base})-(P_{i}^{up}-P_{i}^{base})]+\lambda (price_i{^{up}-price_{i}^{base})P_{i}^{up}})]}_{连续背包问题中的\frac{value}{weight}}} \\ -\sum_{i=1}^{N}{\lambda \theta [(1-P_{i}(A|c))GMV_{i}^{base}+P_{i}(A|c)GMV_{i}^{up}]} \end{gather}

贪心计算指标:

[[1Pi(Ac)][λθ(GMViupGMVibase)+(PiupPibase)]λ(priceiuppriceibase)Piup]\begin{gather} [[1-P_{i}(A|c)][\lambda \theta (GMV_{i}^{up}-GMV_{i}^{base})+(P_{i}^{up}-P_{i}^{base})]-\lambda (price_{i}^{up}-price_{i}^{base})P_{i}^{up}] \end{gather}

贪心计算指标(原):

(1Pi(Ac))(PiupPibase)λ(priceiuppriceibase)Piup(1-P_{i}(A|c))(P_{i}^{up}-P_{i}^{base}) -\lambda (price_{i}^{up}-price_{i}^{base})P_{i}^{up}

根据该升舱规划模型判断是否升舱,若要升舱的话再去让商家找司机(不看距离),如果不升舱再过预分单接受度模型

© 2025 All rights reservedBuilt with DataHub Cloud

Built with LogoDataHub Cloud