Linear function

1. Linear function

fAN(netθ)=λ(netθ)f_{A N}(\text {net}-\theta)=\lambda(\text {net}-\theta)

  • if you tweak the input, the output changes proportionally, following a straight line with a constant slope (λ) for θ=0θ = 0: Pasted image 20231005123046.png|350 see also: week 11 explanation

2. Step function

fAN(net-θ)={γ1 if netθγ2 if net<θf_{A N}(\text {net-}\theta)= \begin{cases}\gamma_1 & \text { if net}\geq \theta \\ \gamma_2 & \text { if net}<\theta\end{cases}

  • Binary output: γ1=1γ_{1} = 1 and γ2=0γ_{2} = 0
  • Bipolar output: γ1=1γ_{1} = 1 and γ2=1γ_{2} = -1 for θ>0\theta>0: Pasted image 20231005123738.png|350

3. Ramp function

fAN(netθ)={γnetθϵnet-θ if ϵ<netθ<ϵγ if netθϵf_{A N}(\text {net}-\theta)= \begin{cases}\gamma & \text {net}-\theta \geq \epsilon \\ \text {net-}\theta & \text { if }-\epsilon<\text {net}-\theta<\epsilon \\ -\gamma & \text { if } \text {net}-\theta \leq-\epsilon\end{cases}

  • combination of the linear and step functions for θ>0\theta>0: Pasted image 20231005124938.png|350

4. Sigmoid function

fAN(netθ)=11+eλ(netθ)f_{A N}(net-\theta)=\frac{1}{1+e^{-\lambda(n e t-\theta)}}

  • continuous version of the ramp function
  • fAN(net)(0,1)f_{AN}(\text{net}) ∈ (0, 1)
  • λ = slope; usually =1= 1. for θ=0\theta =0: Pasted image 20231005134456.png|350

5. Hyperbolic tangent

fAN(netθ)=eλ(netθ)eλ(netθ)eλ(netθ)+eλ(netθ)f_{A N}(\text{net}-\theta)=\frac{e^{\lambda(n e t-\theta)}-e^{-\lambda(n e t-\theta)}}{e^{\lambda(n e t-\theta)}+e^{-\lambda(n e t-\theta)}} fAN(netθ)=21+eλ(netθ)1≈f_{A N}(\text{net}-\theta)=\frac{2}{1+e^{-\lambda(n e t-\theta)}}-1

  • fAN(net)(1,1)f_{AN}(\text{net}) ∈ (-1, 1) for θ=0\theta=0: Pasted image 20231005135039.png|350

6. Gaussian function

fAN(netθ)=e(netθ)2/σ2f_{A N}(\text{net}-\theta)=e^{-(\text{net}-\theta)^2 / \sigma^2}

  • net-θ=\text{net-}\theta= mean of Gaussian distribution
  • σ=σ= standard deviation of Gaussian distribution for θ=0\theta=0: Pasted image 20231005135515.png|350

7. ReLU function

© 2024 All rights reserved

Built with DataHub LogoDataHub Cloud