1. Linear function
fAN(net−θ)=λ(net−θ)
- if you tweak the input, the output changes proportionally, following a straight line with a constant slope (λ)
for θ=0:
see also: week 11 explanation
2. Step function
fAN(net-θ)={γ1γ2 if net≥θ if net<θ
- Binary output: γ1=1 and γ2=0
- Bipolar output: γ1=1 and γ2=−1
for θ>0:
3. Ramp function
fAN(net−θ)=⎩⎨⎧γnet-θ−γnet−θ≥ϵ if −ϵ<net−θ<ϵ if net−θ≤−ϵ
- combination of the linear and step functions
for θ>0:
4. Sigmoid function
fAN(net−θ)=1+e−λ(net−θ)1
- continuous version of the ramp function
- fAN(net)∈(0,1)
- λ = slope; usually =1.
for θ=0:
5. Hyperbolic tangent
fAN(net−θ)=eλ(net−θ)+e−λ(net−θ)eλ(net−θ)−e−λ(net−θ)
≈fAN(net−θ)=1+e−λ(net−θ)2−1
- fAN(net)∈(−1,1)
for θ=0:
6. Gaussian function
fAN(net−θ)=e−(net−θ)2/σ2
- net-θ= mean of Gaussian distribution
- σ= standard deviation of Gaussian distribution
for θ=0: