Files | Size | Format | Created | Updated | License | Source |
---|---|---|---|---|---|---|
2 | 20kB | geojson zip | 5 years ago |
Download files in this dataset
File | Description | Size | Last changed | Download |
---|---|---|---|---|
example | 8kB | geojson (8kB) | ||
geojson-tutorial_zip | Compressed versions of dataset. Includes normalized CSV and JSON data with original data and datapackage.json. | 3kB | zip (3kB) |
This is a preview version. There might be more data in the original version.
Use our data-cli tool designed for data wranglers:
data get https://datahub.io/examples/geojson-tutorial
data info examples/geojson-tutorial
tree examples/geojson-tutorial
# Get a list of dataset's resources
curl -L -s https://datahub.io/examples/geojson-tutorial/datapackage.json | grep path
# Get resources
curl -L https://datahub.io/examples/geojson-tutorial/r/0.geojson
curl -L https://datahub.io/examples/geojson-tutorial/r/1.zip
If you are using R here's how to get the data you want quickly loaded:
install.packages("jsonlite", repos="https://cran.rstudio.com/")
library("jsonlite")
json_file <- 'https://datahub.io/examples/geojson-tutorial/datapackage.json'
json_data <- fromJSON(paste(readLines(json_file), collapse=""))
# get list of all resources:
print(json_data$resources$name)
# print all tabular data(if exists any)
for(i in 1:length(json_data$resources$datahub$type)){
if(json_data$resources$datahub$type[i]=='derived/csv'){
path_to_file = json_data$resources$path[i]
data <- read.csv(url(path_to_file))
print(data)
}
}
Note: You might need to run the script with root permissions if you are running on Linux machine
Install the Frictionless Data data package library and the pandas itself:
pip install datapackage
pip install pandas
Now you can use the datapackage in the Pandas:
import datapackage
import pandas as pd
data_url = 'https://datahub.io/examples/geojson-tutorial/datapackage.json'
# to load Data Package into storage
package = datapackage.Package(data_url)
# to load only tabular data
resources = package.resources
for resource in resources:
if resource.tabular:
data = pd.read_csv(resource.descriptor['path'])
print (data)
For Python, first install the `datapackage` library (all the datasets on DataHub are Data Packages):
pip install datapackage
To get Data Package into your Python environment, run following code:
from datapackage import Package
package = Package('https://datahub.io/examples/geojson-tutorial/datapackage.json')
# print list of all resources:
print(package.resource_names)
# print processed tabular data (if exists any)
for resource in package.resources:
if resource.descriptor['datahub']['type'] == 'derived/csv':
print(resource.read())
If you are using JavaScript, please, follow instructions below:
Install data.js
module using npm
:
$ npm install data.js
Once the package is installed, use the following code snippet:
const {Dataset} = require('data.js')
const path = 'https://datahub.io/examples/geojson-tutorial/datapackage.json'
// We're using self-invoking function here as we want to use async-await syntax:
;(async () => {
const dataset = await Dataset.load(path)
// get list of all resources:
for (const id in dataset.resources) {
console.log(dataset.resources[id]._descriptor.name)
}
// get all tabular data(if exists any)
for (const id in dataset.resources) {
if (dataset.resources[id]._descriptor.format === "csv") {
const file = dataset.resources[id]
// Get a raw stream
const stream = await file.stream()
// entire file as a buffer (be careful with large files!)
const buffer = await file.buffer
// print data
stream.pipe(process.stdout)
}
}
})()
This is an example dataset that demonstrates how to package up GeoJSON data and display it on the map. We are using GeoJSON data for United Kingdom.
We assume that you are familiar with what datapackage.json is and its specifications.
To display your GeoJSON data on the map you should define path to your data inside resources and set format attribute to geojson
. See example datapackage.json:
{
"name": "geojson-tutorial",
"title": "GeoJSON Tutorial",
"version": "0.1.0",
"resources": [
{
"name": "example",
"path": "data/example.geojson",
"format": "geojson",
"mediatype": "application/json"
}
]
}
Note: We are currently not supporting the TopoJSON format. You can use “Vega Graph Spec” and display you TopoJSON data using Vega specification. See our example dataset