Now you can request additional data and/or customized columns!
Try It Now!- iris: 3 error(s) found.
Files | Size | Format | Created | Updated | License | Source |
---|---|---|---|---|---|---|
3 | 43kB | arff csv zip | 4 years ago | 4 years ago | Open Data Commons Public Domain Dedication and License |
Download files in this dataset
File | Description | Size | Last changed | Download |
---|---|---|---|---|
iris_arff | 7kB | arff (7kB) | ||
iris | 5kB | csv (5kB) , json (15kB) | ||
iris_zip | Compressed versions of dataset. Includes normalized CSV and JSON data with original data and datapackage.json. | 8kB | zip (8kB) |
Signup to Premium Service for additional or customised data - Get Started
This is a preview version. There might be more data in the original version.
Signup to Premium Service for additional or customised data - Get Started
This is a preview version. There might be more data in the original version.
Field Name | Order | Type (Format) | Description |
---|---|---|---|
sepallength | 1 | number (default) | |
sepalwidth | 2 | number (default) | |
petallength | 3 | number (default) | |
petalwidth | 4 | number (default) | |
class | 5 | string (default) |
Use our data-cli tool designed for data wranglers:
data get https://datahub.io/machine-learning/iris
data info machine-learning/iris
tree machine-learning/iris
# Get a list of dataset's resources
curl -L -s https://datahub.io/machine-learning/iris/datapackage.json | grep path
# Get resources
curl -L https://datahub.io/machine-learning/iris/r/0.arff
curl -L https://datahub.io/machine-learning/iris/r/1.csv
curl -L https://datahub.io/machine-learning/iris/r/2.zip
If you are using R here's how to get the data you want quickly loaded:
install.packages("jsonlite", repos="https://cran.rstudio.com/")
library("jsonlite")
json_file <- 'https://datahub.io/machine-learning/iris/datapackage.json'
json_data <- fromJSON(paste(readLines(json_file), collapse=""))
# get list of all resources:
print(json_data$resources$name)
# print all tabular data(if exists any)
for(i in 1:length(json_data$resources$datahub$type)){
if(json_data$resources$datahub$type[i]=='derived/csv'){
path_to_file = json_data$resources$path[i]
data <- read.csv(url(path_to_file))
print(data)
}
}
Note: You might need to run the script with root permissions if you are running on Linux machine
Install the Frictionless Data data package library and the pandas itself:
pip install datapackage
pip install pandas
Now you can use the datapackage in the Pandas:
import datapackage
import pandas as pd
data_url = 'https://datahub.io/machine-learning/iris/datapackage.json'
# to load Data Package into storage
package = datapackage.Package(data_url)
# to load only tabular data
resources = package.resources
for resource in resources:
if resource.tabular:
data = pd.read_csv(resource.descriptor['path'])
print (data)
For Python, first install the `datapackage` library (all the datasets on DataHub are Data Packages):
pip install datapackage
To get Data Package into your Python environment, run following code:
from datapackage import Package
package = Package('https://datahub.io/machine-learning/iris/datapackage.json')
# print list of all resources:
print(package.resource_names)
# print processed tabular data (if exists any)
for resource in package.resources:
if resource.descriptor['datahub']['type'] == 'derived/csv':
print(resource.read())
If you are using JavaScript, please, follow instructions below:
Install data.js
module using npm
:
$ npm install data.js
Once the package is installed, use the following code snippet:
const {Dataset} = require('data.js')
const path = 'https://datahub.io/machine-learning/iris/datapackage.json'
// We're using self-invoking function here as we want to use async-await syntax:
;(async () => {
const dataset = await Dataset.load(path)
// get list of all resources:
for (const id in dataset.resources) {
console.log(dataset.resources[id]._descriptor.name)
}
// get all tabular data(if exists any)
for (const id in dataset.resources) {
if (dataset.resources[id]._descriptor.format === "csv") {
const file = dataset.resources[id]
// Get a raw stream
const stream = await file.stream()
// entire file as a buffer (be careful with large files!)
const buffer = await file.buffer
// print data
stream.pipe(process.stdout)
}
}
})()
The resources for this dataset can be found at https://www.openml.org/d/61
Author: R.A. Fisher
Source: UCI - 1936 - Donated by Michael Marshall
Please cite:
Iris Plants Database
This is perhaps the best known database to be found in the pattern recognition literature. Fisher’s paper is a classic in the field and is referenced frequently to this day. (See Duda & Hart, for example.) The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is linearly separable from the other 2; the latter are NOT linearly separable from each other.
Predicted attribute: class of iris plant.
This is an exceedingly simple domain.
1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm
5. class:
-- Iris Setosa
-- Iris Versicolour
-- Iris Virginica
Notifications of data updates and schema changes
Warranty / guaranteed updates
Workflow integration (e.g. Python packages, NPM packages)
Customized data (e.g. you need different or additional data)
Or suggest your own feature from the link below