Files | Size | Format | Created | Updated | License | Source |
---|---|---|---|---|---|---|
3 | 1MB | csv zip | 3 years ago | 3 years ago | Open Data Commons Public Domain Dedication and License | PEW RESEARCH CENTER |
Download files in this dataset
File | Description | Size | Last changed | Download |
---|---|---|---|---|
by_rounded_percentage_share | By rounded percentage share | 78kB | csv (78kB) , json (258kB) | |
by_number_of_population | By number of population | 110kB | csv (110kB) , json (312kB) | |
world-religion-projections_zip | Compressed versions of dataset. Includes normalized CSV and JSON data with original data and datapackage.json. | 126kB | zip (126kB) |
This is a preview version. There might be more data in the original version.
Field Name | Order | Type (Format) | Description |
---|---|---|---|
Year | 1 | year (default) | |
Region | 2 | string (default) | |
Country | 3 | string (default) | |
Buddhists | 4 | number (default) | |
Christians | 5 | number (default) | |
Folk Religions | 6 | number (default) | |
Hindus | 7 | number (default) | |
Jews | 8 | number (default) | |
Muslims | 9 | number (default) | |
Other Religions | 10 | number (default) | |
Unaffiliated | 11 | number (default) |
This is a preview version. There might be more data in the original version.
Field Name | Order | Type (Format) | Description |
---|---|---|---|
Year | 1 | year (default) | |
Region | 2 | string (default) | |
Country | 3 | string (default) | |
Christians | 4 | integer (default) | |
Muslims | 5 | integer (default) | |
Unaffiliated | 6 | integer (default) | |
Hindus | 7 | integer (default) | |
Buddhists | 8 | integer (default) | |
Folk Religions | 9 | integer (default) | |
Other Religions | 10 | integer (default) | |
Jews | 11 | integer (default) | |
All Religions | 12 | integer (default) |
Use our data-cli tool designed for data wranglers:
data get https://datahub.io/sagargg/world-religion-projections
data info sagargg/world-religion-projections
tree sagargg/world-religion-projections
# Get a list of dataset's resources
curl -L -s https://datahub.io/sagargg/world-religion-projections/datapackage.json | grep path
# Get resources
curl -L https://datahub.io/sagargg/world-religion-projections/r/0.csv
curl -L https://datahub.io/sagargg/world-religion-projections/r/1.csv
curl -L https://datahub.io/sagargg/world-religion-projections/r/2.zip
If you are using R here's how to get the data you want quickly loaded:
install.packages("jsonlite", repos="https://cran.rstudio.com/")
library("jsonlite")
json_file <- 'https://datahub.io/sagargg/world-religion-projections/datapackage.json'
json_data <- fromJSON(paste(readLines(json_file), collapse=""))
# get list of all resources:
print(json_data$resources$name)
# print all tabular data(if exists any)
for(i in 1:length(json_data$resources$datahub$type)){
if(json_data$resources$datahub$type[i]=='derived/csv'){
path_to_file = json_data$resources$path[i]
data <- read.csv(url(path_to_file))
print(data)
}
}
Note: You might need to run the script with root permissions if you are running on Linux machine
Install the Frictionless Data data package library and the pandas itself:
pip install datapackage
pip install pandas
Now you can use the datapackage in the Pandas:
import datapackage
import pandas as pd
data_url = 'https://datahub.io/sagargg/world-religion-projections/datapackage.json'
# to load Data Package into storage
package = datapackage.Package(data_url)
# to load only tabular data
resources = package.resources
for resource in resources:
if resource.tabular:
data = pd.read_csv(resource.descriptor['path'])
print (data)
For Python, first install the `datapackage` library (all the datasets on DataHub are Data Packages):
pip install datapackage
To get Data Package into your Python environment, run following code:
from datapackage import Package
package = Package('https://datahub.io/sagargg/world-religion-projections/datapackage.json')
# print list of all resources:
print(package.resource_names)
# print processed tabular data (if exists any)
for resource in package.resources:
if resource.descriptor['datahub']['type'] == 'derived/csv':
print(resource.read())
If you are using JavaScript, please, follow instructions below:
Install data.js
module using npm
:
$ npm install data.js
Once the package is installed, use the following code snippet:
const {Dataset} = require('data.js')
const path = 'https://datahub.io/sagargg/world-religion-projections/datapackage.json'
// We're using self-invoking function here as we want to use async-await syntax:
;(async () => {
const dataset = await Dataset.load(path)
// get list of all resources:
for (const id in dataset.resources) {
console.log(dataset.resources[id]._descriptor.name)
}
// get all tabular data(if exists any)
for (const id in dataset.resources) {
if (dataset.resources[id]._descriptor.format === "csv") {
const file = dataset.resources[id]
// Get a raw stream
const stream = await file.stream()
// entire file as a buffer (be careful with large files!)
const buffer = await file.buffer
// print data
stream.pipe(process.stdout)
}
}
})()
This dataset contains the estimated religious composition of 198 countries and territories for 2010 to 2050.
The data is sourced from PEW RESEARCH CENTER . In original dataset the number and the percentage share of followers for some religions as “<10000” and""<10%". Because of technical limitations of the visualization tool, these values had to be changed into “10000”.
This file contains the number followers by religions and region for 2010 to 2050
This file contains the percentage share of followers by religions and region for 2010 to 2050
This Data Package is licensed by its maintainers under the Public Domain Dedication and License (PDDL).