Now you can request additional data and/or customized columns!

Try It Now!

CPIA structural policies cluster average (1=low to 6=high)


Files Size Format Created Updated License Source
2 277kB csv zip 2 years ago 2 years ago CC-BY-4.0

The structural policies cluster includes trade, financial sector, and business regulatory environment.

Download Developers

Data Files

Download files in this dataset

File Description Size Last changed Download
data Indicator data 51kB csv (51kB) , json (129kB)
iq_cpa_strc_xq_zip Compressed versions of dataset. Includes normalized CSV and JSON data with original data and datapackage.json. 26kB zip (26kB)

Indicator data [data]  

Signup to Premium Service for additional or customised data - Get Started

This is a preview version. There might be more data in the original version.

Field information

Field Name Order Type (Format) Description
Country Name 1 string Country or Region name
Country Code 2 string ISO 3-digit ISO code extended to include regional codes e.g. EUR, ARB etc
Year 3 year Year
Value 4 number The structural policies cluster includes trade, financial sector, and business regulatory environment.

Integrate this dataset into your favourite tool

Use our data-cli tool designed for data wranglers:

data get
data info world-bank/
tree world-bank/
# Get a list of dataset's resources
curl -L -s | grep path

# Get resources

curl -L

curl -L

If you are using R here's how to get the data you want quickly loaded:

install.packages("jsonlite", repos="")

json_file <- ''
json_data <- fromJSON(paste(readLines(json_file), collapse=""))

# get list of all resources:

# print all tabular data(if exists any)
for(i in 1:length(json_data$resources$datahub$type)){
    path_to_file = json_data$resources$path[i]
    data <- read.csv(url(path_to_file))

Note: You might need to run the script with root permissions if you are running on Linux machine

Install the Frictionless Data data package library and the pandas itself:

pip install datapackage
pip install pandas

Now you can use the datapackage in the Pandas:

import datapackage
import pandas as pd

data_url = ''

# to load Data Package into storage
package = datapackage.Package(data_url)

# to load only tabular data
resources = package.resources
for resource in resources:
    if resource.tabular:
        data = pd.read_csv(resource.descriptor['path'])
        print (data)

For Python, first install the `datapackage` library (all the datasets on DataHub are Data Packages):

pip install datapackage

To get Data Package into your Python environment, run following code:

from datapackage import Package

package = Package('')

# print list of all resources:

# print processed tabular data (if exists any)
for resource in package.resources:
    if resource.descriptor['datahub']['type'] == 'derived/csv':

If you are using JavaScript, please, follow instructions below:

Install data.js module using npm:

  $ npm install data.js

Once the package is installed, use the following code snippet:

const {Dataset} = require('data.js')

const path = ''

// We're using self-invoking function here as we want to use async-await syntax:
;(async () => {
  const dataset = await Dataset.load(path)
  // get list of all resources:
  for (const id in dataset.resources) {
  // get all tabular data(if exists any)
  for (const id in dataset.resources) {
    if (dataset.resources[id]._descriptor.format === "csv") {
      const file = dataset.resources[id]
      // Get a raw stream
      const stream = await
      // entire file as a buffer (be careful with large files!)
      const buffer = await file.buffer
      // print data

Read me

The structural policies cluster includes trade, financial sector, and business regulatory environment.


Request Customized Data

Notifications of data updates and schema changes

Warranty / guaranteed updates

Workflow integration (e.g. Python packages, NPM packages)

Customized data (e.g. you need different or additional data)

Or suggest your own feature from the link below