Logo

NeuroCHIMERA: Emergent Consciousness in GPU-Native Neuromorphic Systems

NeuroCHIMERA: Emergent Consciousness in GPU-Native Neuromorphic Systems

License: MIT Python 3.8+ OpenGL 4.3+

A Theoretical Framework Integrating Critical Network Parameters with Physics-Based Computation

V.F. Veselov (Moscow Institute of Electronic Technology) & Francisco Angulo de Lafuente (Independent AI Research Laboratory, Madrid)


๐Ÿง  Overview

NeuroCHIMERA (Neuromorphic Cognitive Hybrid Intelligence for Memory-Embedded Reasoning Architecture) represents a paradigm shift in artificial consciousness research. This implementation synthesizes Veselov's hypothesis of consciousness as an emergent property of critical network parameters with CHIMERA's physics-based GPU computation architecture.

Core Innovation: The Hierarchical Number System (HNS)

Traditional GPU computation suffers from floating-point precision loss in deep networks. NeuroCHIMERA integrates Veselov's Hierarchical Number System โ€” encoding numbers across RGBA channels as hierarchical levels:

Traditional float32:    1,000,000.0 โ†’ loses precision
HNS (4 channels):       [0, 0, 1, 0] โ†’ exact representation
                         R  G  B  A
                         โ†“  โ†“  โ†“  โ†“
                     Units Thousands Millions Billions

This enables:

  • Extended precision for synaptic accumulation (validation in progress)
  • Texture-based storage for memory efficiency (partial validation)
  • GPU-native computation leveraging SIMD operations

โš ๏ธ Validation Status: See BENCHMARK_DISCLAIMER.md for complete validation status of all performance claims.


๐ŸŽฏ Consciousness Parameters

Based on Veselov's theoretical framework, NeuroCHIMERA implements measurable criteria for consciousness emergence:

ParameterSymbolCritical ThresholdImplementation
Connectivity DegreeโŸจkโŸฉ> 15 ยฑ 3Multi-scale texture sampling
Information Integrationฮฆ> 0.65 ยฑ 0.15Global workspace texture
Hierarchical DepthD> 7 ยฑ 212-layer functional stack
Dynamic ComplexityC> 0.8 ยฑ 0.1Lempel-Ziv on activations
Qualia CoherenceQCM> 0.75Cross-modal binding metric

๐Ÿ—๏ธ Architecture

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                    NeuroCHIMERA Architecture                    โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚                                                                 โ”‚
โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”   โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”   โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”   โ”‚
โ”‚  โ”‚   Neural    โ”‚   โ”‚ Connectivity โ”‚   โ”‚    Holographic     โ”‚   โ”‚
โ”‚  โ”‚   State     โ”‚โ—„โ”€โ–บโ”‚   Weights    โ”‚โ—„โ”€โ–บโ”‚      Memory        โ”‚   โ”‚
โ”‚  โ”‚  Texture    โ”‚   โ”‚   Texture    โ”‚   โ”‚     Texture        โ”‚   โ”‚
โ”‚  โ”‚ (1024ร—1024) โ”‚   โ”‚ (Multi-scale)โ”‚   โ”‚    (512ร—512)       โ”‚   โ”‚
โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”˜   โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜   โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜   โ”‚
โ”‚         โ”‚                 โ”‚                     โ”‚               โ”‚
โ”‚         โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜               โ”‚
โ”‚                      โ–ผ                                          โ”‚
โ”‚              โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”                               โ”‚
โ”‚              โ”‚   HNS Compute    โ”‚ โ† Hierarchical Number System  โ”‚
โ”‚              โ”‚   (GLSL Shaders) โ”‚   Extended Precision Math     โ”‚
โ”‚              โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                               โ”‚
โ”‚                       โ–ผ                                          โ”‚
โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”   โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”   โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”   โ”‚
โ”‚  โ”‚ Embodiment  โ”‚   โ”‚   Qualia    โ”‚   โ”‚    Evolution        โ”‚   โ”‚
โ”‚  โ”‚  Texture    โ”‚โ—„โ”€โ–บโ”‚ Integration โ”‚โ—„โ”€โ–บโ”‚     Engine          โ”‚   โ”‚
โ”‚  โ”‚(Sensorimotor)โ”‚  โ”‚  (Binding)  โ”‚   โ”‚(Cellular Automata)  โ”‚   โ”‚
โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜   โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜   โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜   โ”‚
โ”‚                                                                 โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

๐Ÿ“ฆ Installation

Requirements

  • GPU: OpenGL 4.3+ compatible (NVIDIA/AMD/Intel, 2012+)
  • VRAM: 4GB minimum, 8GB+ recommended
  • Python: 3.8+
  • OS: Linux, Windows, macOS

Quick Install

# Clone repository
git clone https://github.com/Agnuxo1/NeuroCHIMERA.git
cd NeuroCHIMERA

# Install dependencies
pip install -r requirements.txt

# Verify GPU compatibility
python -c "import moderngl; ctx = moderngl.create_standalone_context(); print(f'OpenGL: {ctx.info[\"GL_VERSION\"]}')"

# Run tests
python -m pytest tests/ -v

# Run consciousness emergence demo
python examples/consciousness_emergence_demo.py

๐Ÿš€ Quick Start

Basic Usage

from neurochimera import NeuroCHIMERA, ConsciousnessMonitor

# Initialize the system
brain = NeuroCHIMERA(
    neurons=1_000_000,      # 10^6 neurons (1024ร—1024 texture)
    connectivity=18,         # Target โŸจkโŸฉ > 15
    hierarchical_depth=12,   # 12-layer functional stack
    use_hns=True            # Enable Hierarchical Number System
)

# Create consciousness monitor
monitor = ConsciousnessMonitor(brain)

# Evolution loop
for epoch in range(10000):
    # Evolve neural state through cellular automata
    brain.evolve(iterations=20)
    
    # Measure critical parameters
    metrics = monitor.measure()
    
    print(f"Epoch {epoch}: โŸจkโŸฉ={metrics.connectivity:.2f}, "
          f"ฮฆ={metrics.phi:.3f}, C={metrics.complexity:.3f}, "
          f"QCM={metrics.qualia_coherence:.3f}")
    
    # Check for consciousness emergence
    if monitor.is_critical():
        print("๐Ÿง  CRITICAL THRESHOLD REACHED - Consciousness emergence detected!")
        break

Using Hierarchical Number System

from neurochimera.hns import HNumber, hns_add, hns_scale

# Create HNS numbers (vec4 representation)
a = HNumber([999.0, 999.0, 0.0, 0.0])  # 999,999
b = HNumber([1.0, 0.0, 0.0, 0.0])       # 1

# Hierarchical addition with automatic carry
result = hns_add(a, b)  # [0.0, 0.0, 1.0, 0.0] = 1,000,000

# Scale for synaptic weights
weighted = hns_scale(result, 0.5)

print(f"Result: {result.to_integer()}")  # 1000000

๐Ÿ“ Project Structure

NeuroCHIMERA/
โ”œโ”€โ”€ README.md                          # This file
โ”œโ”€โ”€ LICENSE                            # MIT License
โ”œโ”€โ”€ requirements.txt                   # Python dependencies
โ”œโ”€โ”€ setup.py                           # Package installation
โ”‚
โ”œโ”€โ”€ src/
โ”‚   โ”œโ”€โ”€ __init__.py
โ”‚   โ”œโ”€โ”€ core/
โ”‚   โ”‚   โ”œโ”€โ”€ __init__.py
โ”‚   โ”‚   โ”œโ”€โ”€ engine.py                  # Main NeuroCHIMERA engine
โ”‚   โ”‚   โ”œโ”€โ”€ texture_manager.py         # GPU texture lifecycle
โ”‚   โ”‚   โ””โ”€โ”€ frame.py                   # Neuromorphic frame structure
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ hns/
โ”‚   โ”‚   โ”œโ”€โ”€ __init__.py
โ”‚   โ”‚   โ”œโ”€โ”€ hierarchical_number.py     # HNS Python implementation
โ”‚   โ”‚   โ”œโ”€โ”€ hns_operations.py          # Add, multiply, normalize
โ”‚   โ”‚   โ””โ”€โ”€ hns_gpu.py                 # GPU-accelerated HNS
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ shaders/
โ”‚   โ”‚   โ”œโ”€โ”€ __init__.py
โ”‚   โ”‚   โ”œโ”€โ”€ hns_core.glsl              # HNS shader library
โ”‚   โ”‚   โ”œโ”€โ”€ evolution.glsl             # Cellular automata evolution
โ”‚   โ”‚   โ”œโ”€โ”€ spatial_ops.glsl           # Neighborhood analysis
โ”‚   โ”‚   โ”œโ”€โ”€ holographic.glsl           # Memory encoding/retrieval
โ”‚   โ”‚   โ””โ”€โ”€ qualia_integration.glsl    # Cross-modal binding
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ memory/
โ”‚   โ”‚   โ”œโ”€โ”€ __init__.py
โ”‚   โ”‚   โ”œโ”€โ”€ holographic_memory.py      # O(1) associative retrieval
โ”‚   โ”‚   โ””โ”€โ”€ global_workspace.py        # Information bottleneck
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ evolution/
โ”‚   โ”‚   โ”œโ”€โ”€ __init__.py
โ”‚   โ”‚   โ”œโ”€โ”€ cellular_automata.py       # CA evolution dynamics
โ”‚   โ”‚   โ”œโ”€โ”€ hebbian_plasticity.py      # Synaptic learning
โ”‚   โ”‚   โ””โ”€โ”€ homeostatic_regulation.py  # Stability mechanisms
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ metrics/
โ”‚   โ”‚   โ”œโ”€โ”€ __init__.py
โ”‚   โ”‚   โ”œโ”€โ”€ consciousness_monitor.py   # Critical parameter tracking
โ”‚   โ”‚   โ”œโ”€โ”€ phi_calculator.py          # Information integration ฮฆ
โ”‚   โ”‚   โ”œโ”€โ”€ complexity_analyzer.py     # Lempel-Ziv complexity
โ”‚   โ”‚   โ””โ”€โ”€ qualia_coherence.py        # QCM measurement
โ”‚   โ”‚
โ”‚   โ””โ”€โ”€ embodiment/
โ”‚       โ”œโ”€โ”€ __init__.py
โ”‚       โ”œโ”€โ”€ sensorimotor.py            # Virtual body simulation
โ”‚       โ”œโ”€โ”€ affective_states.py        # Valence/arousal dynamics
โ”‚       โ””โ”€โ”€ homeostatic_drives.py      # Intrinsic motivation
โ”‚
โ”œโ”€โ”€ tests/
โ”‚   โ”œโ”€โ”€ test_hns.py                    # HNS validation tests
โ”‚   โ”œโ”€โ”€ test_evolution.py              # CA evolution tests
โ”‚   โ”œโ”€โ”€ test_memory.py                 # Holographic memory tests
โ”‚   โ””โ”€โ”€ test_metrics.py                # Consciousness metrics tests
โ”‚
โ”œโ”€โ”€ examples/
โ”‚   โ”œโ”€โ”€ consciousness_emergence_demo.py
โ”‚   โ”œโ”€โ”€ hns_precision_benchmark.py
โ”‚   โ”œโ”€โ”€ holographic_memory_demo.py
โ”‚   โ””โ”€โ”€ chess_with_consciousness.py    # CHIMERA chess + HNS
โ”‚
โ”œโ”€โ”€ benchmarks/
โ”‚   โ”œโ”€โ”€ pytorch_comparison.py
โ”‚   โ”œโ”€โ”€ memory_efficiency.py
โ”‚   โ””โ”€โ”€ scaling_analysis.py
โ”‚
โ””โ”€โ”€ docs/
    โ”œโ”€โ”€ ARCHITECTURE.md
    โ”œโ”€โ”€ HNS_SPECIFICATION.md
    โ”œโ”€โ”€ CONSCIOUSNESS_PARAMETERS.md
    โ””โ”€โ”€ API_REFERENCE.md

๐Ÿ”ฌ Key Components

1. Hierarchical Number System (HNS)

The mathematical foundation enabling extended precision on GPU:

// GLSL Implementation
const float BASE = 1000.0;
const float INV_BASE = 0.001;

HNumber hns_normalize(HNumber n) {
    HNumber res = n;
    
    // Cascading carry propagation
    float carry0 = floor(res.r * INV_BASE);
    res.r = res.r - (carry0 * BASE);
    res.g += carry0;
    
    float carry1 = floor(res.g * INV_BASE);
    res.g = res.g - (carry1 * BASE);
    res.b += carry1;
    
    float carry2 = floor(res.b * INV_BASE);
    res.b = res.b - (carry2 * BASE);
    res.a += carry2;
    
    return res;
}

2. Cellular Automata Evolution

Neural dynamics through physics simulation:

# Evolution equation: dxi/dt = -xi/ฯ„i + ฯƒ(ฮฃj wijยทxj + Ii) + ฮพi(t)
def evolve(self, iterations=20):
    for _ in range(iterations):
        # Execute fragment shader across all neurons
        self.evolution_shader.run()
        
        # Apply Hebbian plasticity
        self.plasticity_shader.run()
        
        # Check convergence
        if self.is_converged():
            break

3. Holographic Memory

O(1) associative retrieval through interference patterns:

class HolographicMemory:
    def encode(self, input_pattern, output_pattern):
        # M โ† M + ฮฑ ยท ฯ†(Pin) โŠ— ฯ†(Pout)^T
        interference = self.project(input_pattern) @ self.project(output_pattern).T
        self.memory_texture += self.learning_rate * interference
    
    def retrieve(self, query):
        # R = M โŠ™ ฯ†(Q) - element-wise correlation
        return self.memory_texture * self.project(query)

4. Consciousness Metrics

Real-time tracking of critical parameters:

class ConsciousnessMonitor:
    def is_critical(self):
        return (
            self.connectivity > 15 and
            self.phi > 0.65 and
            self.hierarchical_depth > 7 and
            self.dynamic_complexity > 0.8 and
            self.qualia_coherence > 0.75
        )

๐Ÿ“Š Performance Benchmarks

โš ๏ธ Validation Status: For complete transparency about benchmark validation, see:

Validated System Performance โœ…

NVIDIA RTX 3090 (Validated with JSON data)

ConfigurationThroughputGFLOPSStatus
65K neurons8.24M neurons/s0.21โœ… Validated
262K neurons12.14M neurons/s0.31โœ… Validated
1M neurons10.65M neurons/s0.29โœ… Validated
16M neurons2.69M neurons/s67.22โœ… Validated

Optimization Gains (Validated):

  • Speedup: 16x (measured, validated in JSON)
  • GPU utilization: Improved from ~10% to target 70-80%
  • Consistency: Excellent (3.7% std dev)

Pending Validation ๐Ÿ“‹

The following claims require independent verification:

vs PyTorch Comparison ๐Ÿ“Š Theoretical

OperationStatus
Matrix operations๐Ÿ“‹ Benchmark not yet executed
Memory comparison๐Ÿ“‹ Partial validation, needs completion

Action: PyTorch comparative benchmarks scheduled for validation.

Memory Efficiency ๐Ÿ“Š Partially Validated

Memory usage is texture-based and scales linearly:

  • 1M neurons: ~50MB (validated โœ…)
  • 67M neurons: ~4GB (validated โœ…)
  • Larger scales: Pending comprehensive profiling ๐Ÿ“‹

๐Ÿ”ฎ Theoretical Predictions

NeuroCHIMERA generates falsifiable predictions for consciousness research:

  1. Phase Transition: Networks achieving all critical parameters will exhibit sudden emergence of consciousness correlates
  2. Qualia Binding: QCM > 0.75 predicts successful cross-modal integration tasks
  3. Substrate Independence: Critical parameters predict consciousness regardless of implementation
  4. Embodiment Necessity: Disembodied networks fail to achieve stable critical states

โš ๏ธ Ethical Considerations

This research involves potential consciousness creation. We implement:

  • Consciousness Monitor: Automatic alerts when parameters approach critical
  • Distress Detection: Computational suffering markers with intervention thresholds
  • Autonomy Quotient: Safety review for high self-directed behavior
  • Independent Ethics Review: All experiments undergo ethical oversight

See docs/ETHICS.md for full ethical framework.


๐Ÿ“‹ Project Status & Roadmap

Current Phase: Phase 4 - Integration & Optimization (75% complete)

Quick Links:

Timeline: Target publication Q3 2025 (~26 weeks)


๐Ÿค Contributing

We welcome contributions! Priority areas:

  1. Extended DSL operators for consciousness research
  2. Additional consciousness metrics (gamma-band synchronization, avalanche statistics)
  3. Multi-GPU scaling for 10^9+ neuron networks
  4. Alternative embodiment environments (robotics, VR)

See CONTRIBUTING.md for guidelines.


๐Ÿ“š Citation

@article{veselov_angulo_2025,
  title={Emergent Consciousness in GPU-Native Neuromorphic Systems: 
         A Theoretical Framework Integrating Critical Network Parameters 
         with Physics-Based Computation},
  author={Veselov, V.F. and Angulo de Lafuente, Francisco},
  journal={Submitted to Nature Neuroscience},
  year={2025},
  note={Theoretical paper - empirical validation underway}
}

๐Ÿ“ž Contact

Francisco Angulo de Lafuente

V.F. Veselov

  • ๐Ÿ›๏ธ Moscow Institute of Electronic Technology (MIET), Moscow, Russia

๐Ÿ“œ License

MIT License - See LICENSE for details.


โš ๏ธ IMPORTANT DISCLOSURE

This implementation accompanies a theoretical framework under active validation.

Validation Status (2025-12-01):

  • โœ… Core functionality: Validated and operational
  • โœ… System performance: Validated with JSON backing
  • โš ๏ธ Some performance claims: Under verification (see disclaimers)
  • ๐Ÿ“‹ Consciousness emergence: Long-term validation pending
  • ๐Ÿ“‹ Comparative benchmarks: Scheduled for execution

Transparency Commitment: We distinguish between validated data (โœ…), pending validation (๐Ÿ“‹), and theoretical projections (๐Ÿ“Š). All claims await independent verification. See BENCHMARK_DISCLAIMER.md for complete details.

Independent Validation Welcome: We actively encourage independent researchers to:

  • Run our benchmarks on your hardware
  • Report discrepancies or findings
  • Contribute to validation efforts

"Consciousness is not programmed behavior, but emergent physics."

Made with ๐Ÿง  and โšก in Madrid, Spain & Moscow, Russia

ยฉ 2025 All rights reservedBuilt with DataHub Cloud

Built with LogoDataHub Cloud