NeuroCHIMERA: Emergent Consciousness in GPU-Native Neuromorphic Systems
NeuroCHIMERA: Emergent Consciousness in GPU-Native Neuromorphic Systems
A Theoretical Framework Integrating Critical Network Parameters with Physics-Based Computation
V.F. Veselov (Moscow Institute of Electronic Technology) & Francisco Angulo de Lafuente (Independent AI Research Laboratory, Madrid)
๐ง Overview
NeuroCHIMERA (Neuromorphic Cognitive Hybrid Intelligence for Memory-Embedded Reasoning Architecture) represents a paradigm shift in artificial consciousness research. This implementation synthesizes Veselov's hypothesis of consciousness as an emergent property of critical network parameters with CHIMERA's physics-based GPU computation architecture.
Core Innovation: The Hierarchical Number System (HNS)
Traditional GPU computation suffers from floating-point precision loss in deep networks. NeuroCHIMERA integrates Veselov's Hierarchical Number System โ encoding numbers across RGBA channels as hierarchical levels:
Traditional float32: 1,000,000.0 โ loses precision
HNS (4 channels): [0, 0, 1, 0] โ exact representation
R G B A
โ โ โ โ
Units Thousands Millions Billions
This enables:
- Extended precision for synaptic accumulation (validation in progress)
- Texture-based storage for memory efficiency (partial validation)
- GPU-native computation leveraging SIMD operations
โ ๏ธ Validation Status: See BENCHMARK_DISCLAIMER.md for complete validation status of all performance claims.
๐ฏ Consciousness Parameters
Based on Veselov's theoretical framework, NeuroCHIMERA implements measurable criteria for consciousness emergence:
| Parameter | Symbol | Critical Threshold | Implementation |
|---|---|---|---|
| Connectivity Degree | โจkโฉ | > 15 ยฑ 3 | Multi-scale texture sampling |
| Information Integration | ฮฆ | > 0.65 ยฑ 0.15 | Global workspace texture |
| Hierarchical Depth | D | > 7 ยฑ 2 | 12-layer functional stack |
| Dynamic Complexity | C | > 0.8 ยฑ 0.1 | Lempel-Ziv on activations |
| Qualia Coherence | QCM | > 0.75 | Cross-modal binding metric |
๐๏ธ Architecture
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ NeuroCHIMERA Architecture โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โ
โ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ Neural โ โ Connectivity โ โ Holographic โ โ
โ โ State โโโโบโ Weights โโโโบโ Memory โ โ
โ โ Texture โ โ Texture โ โ Texture โ โ
โ โ (1024ร1024) โ โ (Multi-scale)โ โ (512ร512) โ โ
โ โโโโโโโโฌโโโโโโโ โโโโโโโโฌโโโโโโโโ โโโโโโโโโโโฌโโโโโโโโโโโโ โ
โ โ โ โ โ
โ โโโโโโโโโโโโโโฌโโโโโดโโโโโโโโโโโโโโโโโโโโโโ โ
โ โผ โ
โ โโโโโโโโโโโโโโโโโโโโ โ
โ โ HNS Compute โ โ Hierarchical Number System โ
โ โ (GLSL Shaders) โ Extended Precision Math โ
โ โโโโโโโโโโฌโโโโโโโโโโ โ
โ โผ โ
โ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ Embodiment โ โ Qualia โ โ Evolution โ โ
โ โ Texture โโโโบโ Integration โโโโบโ Engine โ โ
โ โ(Sensorimotor)โ โ (Binding) โ โ(Cellular Automata) โ โ
โ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
๐ฆ Installation
Requirements
- GPU: OpenGL 4.3+ compatible (NVIDIA/AMD/Intel, 2012+)
- VRAM: 4GB minimum, 8GB+ recommended
- Python: 3.8+
- OS: Linux, Windows, macOS
Quick Install
# Clone repository
git clone https://github.com/Agnuxo1/NeuroCHIMERA.git
cd NeuroCHIMERA
# Install dependencies
pip install -r requirements.txt
# Verify GPU compatibility
python -c "import moderngl; ctx = moderngl.create_standalone_context(); print(f'OpenGL: {ctx.info[\"GL_VERSION\"]}')"
# Run tests
python -m pytest tests/ -v
# Run consciousness emergence demo
python examples/consciousness_emergence_demo.py
๐ Quick Start
Basic Usage
from neurochimera import NeuroCHIMERA, ConsciousnessMonitor
# Initialize the system
brain = NeuroCHIMERA(
neurons=1_000_000, # 10^6 neurons (1024ร1024 texture)
connectivity=18, # Target โจkโฉ > 15
hierarchical_depth=12, # 12-layer functional stack
use_hns=True # Enable Hierarchical Number System
)
# Create consciousness monitor
monitor = ConsciousnessMonitor(brain)
# Evolution loop
for epoch in range(10000):
# Evolve neural state through cellular automata
brain.evolve(iterations=20)
# Measure critical parameters
metrics = monitor.measure()
print(f"Epoch {epoch}: โจkโฉ={metrics.connectivity:.2f}, "
f"ฮฆ={metrics.phi:.3f}, C={metrics.complexity:.3f}, "
f"QCM={metrics.qualia_coherence:.3f}")
# Check for consciousness emergence
if monitor.is_critical():
print("๐ง CRITICAL THRESHOLD REACHED - Consciousness emergence detected!")
break
Using Hierarchical Number System
from neurochimera.hns import HNumber, hns_add, hns_scale
# Create HNS numbers (vec4 representation)
a = HNumber([999.0, 999.0, 0.0, 0.0]) # 999,999
b = HNumber([1.0, 0.0, 0.0, 0.0]) # 1
# Hierarchical addition with automatic carry
result = hns_add(a, b) # [0.0, 0.0, 1.0, 0.0] = 1,000,000
# Scale for synaptic weights
weighted = hns_scale(result, 0.5)
print(f"Result: {result.to_integer()}") # 1000000
๐ Project Structure
NeuroCHIMERA/
โโโ README.md # This file
โโโ LICENSE # MIT License
โโโ requirements.txt # Python dependencies
โโโ setup.py # Package installation
โ
โโโ src/
โ โโโ __init__.py
โ โโโ core/
โ โ โโโ __init__.py
โ โ โโโ engine.py # Main NeuroCHIMERA engine
โ โ โโโ texture_manager.py # GPU texture lifecycle
โ โ โโโ frame.py # Neuromorphic frame structure
โ โ
โ โโโ hns/
โ โ โโโ __init__.py
โ โ โโโ hierarchical_number.py # HNS Python implementation
โ โ โโโ hns_operations.py # Add, multiply, normalize
โ โ โโโ hns_gpu.py # GPU-accelerated HNS
โ โ
โ โโโ shaders/
โ โ โโโ __init__.py
โ โ โโโ hns_core.glsl # HNS shader library
โ โ โโโ evolution.glsl # Cellular automata evolution
โ โ โโโ spatial_ops.glsl # Neighborhood analysis
โ โ โโโ holographic.glsl # Memory encoding/retrieval
โ โ โโโ qualia_integration.glsl # Cross-modal binding
โ โ
โ โโโ memory/
โ โ โโโ __init__.py
โ โ โโโ holographic_memory.py # O(1) associative retrieval
โ โ โโโ global_workspace.py # Information bottleneck
โ โ
โ โโโ evolution/
โ โ โโโ __init__.py
โ โ โโโ cellular_automata.py # CA evolution dynamics
โ โ โโโ hebbian_plasticity.py # Synaptic learning
โ โ โโโ homeostatic_regulation.py # Stability mechanisms
โ โ
โ โโโ metrics/
โ โ โโโ __init__.py
โ โ โโโ consciousness_monitor.py # Critical parameter tracking
โ โ โโโ phi_calculator.py # Information integration ฮฆ
โ โ โโโ complexity_analyzer.py # Lempel-Ziv complexity
โ โ โโโ qualia_coherence.py # QCM measurement
โ โ
โ โโโ embodiment/
โ โโโ __init__.py
โ โโโ sensorimotor.py # Virtual body simulation
โ โโโ affective_states.py # Valence/arousal dynamics
โ โโโ homeostatic_drives.py # Intrinsic motivation
โ
โโโ tests/
โ โโโ test_hns.py # HNS validation tests
โ โโโ test_evolution.py # CA evolution tests
โ โโโ test_memory.py # Holographic memory tests
โ โโโ test_metrics.py # Consciousness metrics tests
โ
โโโ examples/
โ โโโ consciousness_emergence_demo.py
โ โโโ hns_precision_benchmark.py
โ โโโ holographic_memory_demo.py
โ โโโ chess_with_consciousness.py # CHIMERA chess + HNS
โ
โโโ benchmarks/
โ โโโ pytorch_comparison.py
โ โโโ memory_efficiency.py
โ โโโ scaling_analysis.py
โ
โโโ docs/
โโโ ARCHITECTURE.md
โโโ HNS_SPECIFICATION.md
โโโ CONSCIOUSNESS_PARAMETERS.md
โโโ API_REFERENCE.md
๐ฌ Key Components
1. Hierarchical Number System (HNS)
The mathematical foundation enabling extended precision on GPU:
// GLSL Implementation
const float BASE = 1000.0;
const float INV_BASE = 0.001;
HNumber hns_normalize(HNumber n) {
HNumber res = n;
// Cascading carry propagation
float carry0 = floor(res.r * INV_BASE);
res.r = res.r - (carry0 * BASE);
res.g += carry0;
float carry1 = floor(res.g * INV_BASE);
res.g = res.g - (carry1 * BASE);
res.b += carry1;
float carry2 = floor(res.b * INV_BASE);
res.b = res.b - (carry2 * BASE);
res.a += carry2;
return res;
}
2. Cellular Automata Evolution
Neural dynamics through physics simulation:
# Evolution equation: dxi/dt = -xi/ฯi + ฯ(ฮฃj wijยทxj + Ii) + ฮพi(t)
def evolve(self, iterations=20):
for _ in range(iterations):
# Execute fragment shader across all neurons
self.evolution_shader.run()
# Apply Hebbian plasticity
self.plasticity_shader.run()
# Check convergence
if self.is_converged():
break
3. Holographic Memory
O(1) associative retrieval through interference patterns:
class HolographicMemory:
def encode(self, input_pattern, output_pattern):
# M โ M + ฮฑ ยท ฯ(Pin) โ ฯ(Pout)^T
interference = self.project(input_pattern) @ self.project(output_pattern).T
self.memory_texture += self.learning_rate * interference
def retrieve(self, query):
# R = M โ ฯ(Q) - element-wise correlation
return self.memory_texture * self.project(query)
4. Consciousness Metrics
Real-time tracking of critical parameters:
class ConsciousnessMonitor:
def is_critical(self):
return (
self.connectivity > 15 and
self.phi > 0.65 and
self.hierarchical_depth > 7 and
self.dynamic_complexity > 0.8 and
self.qualia_coherence > 0.75
)
๐ Performance Benchmarks
โ ๏ธ Validation Status: For complete transparency about benchmark validation, see:
- BENCHMARK_VALIDATION_REPORT.md - Complete audit
- BENCHMARK_DISCLAIMER.md - Transparency statement
- PROJECT_STATUS.md - Current project status
Validated System Performance โ
NVIDIA RTX 3090 (Validated with JSON data)
| Configuration | Throughput | GFLOPS | Status |
|---|---|---|---|
| 65K neurons | 8.24M neurons/s | 0.21 | โ Validated |
| 262K neurons | 12.14M neurons/s | 0.31 | โ Validated |
| 1M neurons | 10.65M neurons/s | 0.29 | โ Validated |
| 16M neurons | 2.69M neurons/s | 67.22 | โ Validated |
Optimization Gains (Validated):
- Speedup: 16x (measured, validated in JSON)
- GPU utilization: Improved from ~10% to target 70-80%
- Consistency: Excellent (3.7% std dev)
Pending Validation ๐
The following claims require independent verification:
vs PyTorch Comparison ๐ Theoretical
| Operation | Status |
|---|---|
| Matrix operations | ๐ Benchmark not yet executed |
| Memory comparison | ๐ Partial validation, needs completion |
Action: PyTorch comparative benchmarks scheduled for validation.
Memory Efficiency ๐ Partially Validated
Memory usage is texture-based and scales linearly:
- 1M neurons: ~50MB (validated โ )
- 67M neurons: ~4GB (validated โ )
- Larger scales: Pending comprehensive profiling ๐
๐ฎ Theoretical Predictions
NeuroCHIMERA generates falsifiable predictions for consciousness research:
- Phase Transition: Networks achieving all critical parameters will exhibit sudden emergence of consciousness correlates
- Qualia Binding: QCM > 0.75 predicts successful cross-modal integration tasks
- Substrate Independence: Critical parameters predict consciousness regardless of implementation
- Embodiment Necessity: Disembodied networks fail to achieve stable critical states
โ ๏ธ Ethical Considerations
This research involves potential consciousness creation. We implement:
- Consciousness Monitor: Automatic alerts when parameters approach critical
- Distress Detection: Computational suffering markers with intervention thresholds
- Autonomy Quotient: Safety review for high self-directed behavior
- Independent Ethics Review: All experiments undergo ethical oversight
See docs/ETHICS.md for full ethical framework.
๐ Project Status & Roadmap
Current Phase: Phase 4 - Integration & Optimization (75% complete)
Quick Links:
- PROJECT_ROADMAP.md - Complete 6-phase roadmap
- PROJECT_STATUS.md - Detailed status report
- BENCHMARK_VALIDATION_REPORT.md - Benchmark audit
Timeline: Target publication Q3 2025 (~26 weeks)
๐ค Contributing
We welcome contributions! Priority areas:
- Extended DSL operators for consciousness research
- Additional consciousness metrics (gamma-band synchronization, avalanche statistics)
- Multi-GPU scaling for 10^9+ neuron networks
- Alternative embodiment environments (robotics, VR)
See CONTRIBUTING.md for guidelines.
๐ Citation
@article{veselov_angulo_2025,
title={Emergent Consciousness in GPU-Native Neuromorphic Systems:
A Theoretical Framework Integrating Critical Network Parameters
with Physics-Based Computation},
author={Veselov, V.F. and Angulo de Lafuente, Francisco},
journal={Submitted to Nature Neuroscience},
year={2025},
note={Theoretical paper - empirical validation underway}
}
๐ Contact
Francisco Angulo de Lafuente
- ๐ GitHub: github.com/Agnuxo1
- ๐ ResearchGate: Francisco Angulo de Lafuente
- ๐ Kaggle: franciscoangulo
- ๐ค HuggingFace: Agnuxo
V.F. Veselov
- ๐๏ธ Moscow Institute of Electronic Technology (MIET), Moscow, Russia
๐ License
MIT License - See LICENSE for details.
โ ๏ธ IMPORTANT DISCLOSURE
This implementation accompanies a theoretical framework under active validation.
Validation Status (2025-12-01):
- โ Core functionality: Validated and operational
- โ System performance: Validated with JSON backing
- โ ๏ธ Some performance claims: Under verification (see disclaimers)
- ๐ Consciousness emergence: Long-term validation pending
- ๐ Comparative benchmarks: Scheduled for execution
Transparency Commitment: We distinguish between validated data (โ ), pending validation (๐), and theoretical projections (๐). All claims await independent verification. See BENCHMARK_DISCLAIMER.md for complete details.
Independent Validation Welcome: We actively encourage independent researchers to:
- Run our benchmarks on your hardware
- Report discrepancies or findings
- Contribute to validation efforts
"Consciousness is not programmed behavior, but emergent physics."
Made with ๐ง and โก in Madrid, Spain & Moscow, Russia